

DESCRIPTION

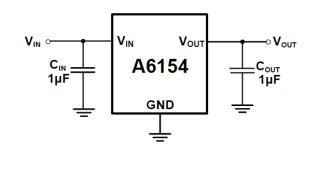
The A6154 series is a set of low power high voltage regulators implemented in CMOS technology. It can operate from 2.5V to 36V. Which can provide 150mA output current. The device allows input voltage as high as 36V.

The A6154 series is available in several fixed 3.0V, 3.3V, 3.6V and 5.0V output voltage. CMOS technology ensures low dropout voltage and ultralow quiescent current.

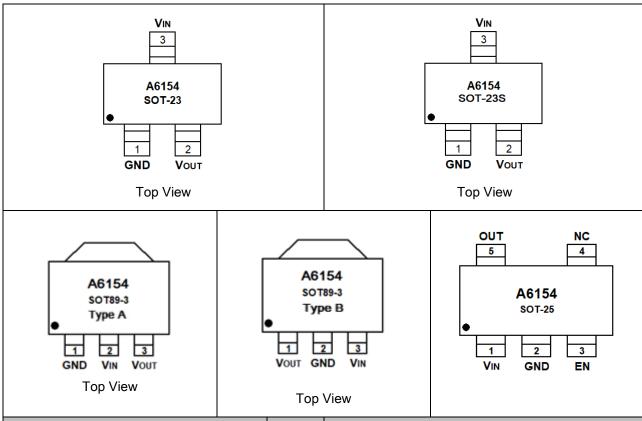
The A6154 is available in SOT-23, SOT-23S, SOT-25 and SOT89-3 packages.

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	Ε2	A6154E3R-XX	
SPQ: 3,000pcs/Reel	E3	A6154E3VR-XX	
SOT-23S	F20	A6154E3SR-XX	
SPQ: 3,000pcs/Reel	E3S	A6154E3SVR-XX	
SOT-25	-	A6154E5R-XX	
SPQ: 3,000pcs/Reel	E5	A6154E5VR-XX	
SOT89-3	K0	A6154K5R-XXZ	
SPQ: 1,000pcs/Reel	K3	A6154K5VR-XXZ	
	XX: Output	XX: Output Voltage	
	33=3.3V, 50=5.0V		
Note	Z: Pin Type A or B		
	V: Halogen free Package		
	R: Tape & Reel		
AiT provides all RoHS products			


FEATURES

- Ultralow Quiescent Current I_Q:
 2.5μA Typical at Light Loads
 5μA Maximum at Light Loads
- 150mA Nominal Output Current
- High Input Voltage (up to 36V)
- Fixed 3.0V、3.3V、3.6V and 5.0V Output Voltage
- Operating Temperature Range:
 - -40°C to +85°C
- Available in SOT-23, SOT-23S ,SOT-25 and SOT89-3 packages


APPLICATION

- Audio/Video Equipment
- Communication Equipment
- Battery-Powered Equipment
- Automotive Head Unit
- Laptop, Palmtops, Notebook Computers

TYPICAL APPLICATION

PIN DESCRIPTION

Pin #						
SOT-23	SOT-23S	SOT	89-3	SOT-25	Symbol	Function
301-23	301-233	Α	В	301-25		
1	1	1	2	2	GND	Ground
2	2	3	1	5	V _{OUT}	Regulator Output. Recommended output capacitor range:1µF to 10µF.
3	2	2	3	1	Vin	Regulator Input. Up to 36V input voltage. At least 1µF supply bypass capacitor is recommended.
-	-	-	-	3	EN	Enable pin. Drive EN greater than $V_{\text{EN(H)}}$ to turn on the regulator. Drive EN less than $V_{\text{EN(L)}}$ to put the LDO into shutdown mode.
-	-	-	-	4	NC	Not connect

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) NOTE1

over operating free-air temperature	e range (unless otherwise noted) Note:	
V _{IN} , Input Voltage		-0.3V ~ 45V
V _{EN} , Enable Input Voltage		-0.3V ~ V _{IN}
T _J , Junction Temperature		-40°C~150°C
P _D , Continuous Power Dissipation ^{NOTE2}		Internally Limited
T _{STG} , Storage Temperature	-65°C~150°C	
ESD Ratings		
V _{ESD} , Electrostatic discharge	Human-body model (HBM)	±1000
	Machine model (MM)	±100

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: All voltages are with respect to the GND pin.

NOTE2: Internal thermal shutdown circuitry protects the device from permanent damage.

RECOMMENDED WORK CONDITIONS

over operating free-air temperature range (unless otherwise noted) NOTE1

Parameter	Symbol	Min	Max	Unit
Input Supply Voltage	VIN	2.5	36	V
Enable voltage	V _{EN}	0	36	V
Operating Temperature	T _A	-40	+85	°C

NOTE1: All voltages are with respect to the GND pin.

ELECTRICAL CHARACTERISTICS

 V_{IN} = V_{OUT} + 2V, C_{IN} = C_{OUT} = 1 μ F, V_{OUT} = 3.3V, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Cor	nditions	Min.	Тур.	Max.	Unit
Input Voltage	V_{IN}	V _{OUT} = 3.3V		2.5 NOTE1	-	36	V
Output Valtage Acquires		I _{OUT} = 0.1mA		-2.5	0	2.5	%
Output Voltage Accuracy		I _{OUT} = 1mA,	Class A	-1.0	0	1.0	%
		No load	V _{IN} = V _{OUT} + 2V	-	2.5	5	
Ground Pin Current		INO IOAU	V _{IN} = 36V	-	5.0	8	μA
		I _{ОUТ} = 50mA	.	-	2.5	-	
Maximum Output Current ^{NOTE2}				150	-	-	mA
Dropout VoltageNOTE3	V _{DROP}	I _{OUT} = 500m	A	-	1200	1800	mV
	ΔV_{OUT}	V _{IN} = V _{OUT} +	2V to 36V,				24.54
Line Regulation	$\Delta V_{IN} \times V_{OUT}$	I _{OUT} = 1mA		-	0.001	0.012	%/V
		V _{IN} =V _{OUT} +2	V,				.,
Load Regulation	ΔV_{OUT}	I _{OUT} = 1mA to150mA		-	11	20	mV
Power Supply Rejection	PSRR	V _{OUT} = 3.3V,	f = 217Hz	-	57	-	dB
Ratio	FORK	I _{OUT} = 10mA	f = 1KHz	-	54	-	uБ
Output Voltage Temperature	ΔV_{OUT}	I _{OUT} = 1mA			70		1°C
Coefficient ^{NOTE4}	$\Delta T_A \times V_{OUT}$	-40°C to +8	5°C	-	70	-	ppm/°C
THERMAL PROTECTION							
Thermal Shutdown	т				400		°C
Temperature	Tshon			-	120	-	C
SHUTDOWN							
EN Voltage Range	V _{EN}	-40°C to +8	5°C	-0.3	-	V _{IN} +0.3	V
	V_{IH}	V _{IN} = V _{OUT} + 2Vto 36V -40°C to +85°C		1.1	-	-	
EN Input Threshold		V _{IN} = V _{OUT} + 2Vto 36V				0.4	V
	VIL	-40°C to +85°C		-	-	0.4	
EN Input Rice Current	Івн	EN=36V		-	0.01	1	μΑ
EN Input Bias Current	I_{BL}	EN=0V, -40°C to +85°C		-	0.01	1	
Shutdown Supply Current	I _{Q(SHDN)}	EN=0V, -40°C to +85°C		-	1.0	2	μΑ
Start-Up TimeNOTE5	t _{STR}	C _{OUT} = 1μF,	No Load	-	230	-	μs

 V_{IN} = V_{OUT} + 2V, C_{IN} = C_{OUT} = 1 μ F, V_{OUT} = 5.0V, T_A = +25°C, unless otherwise noted.

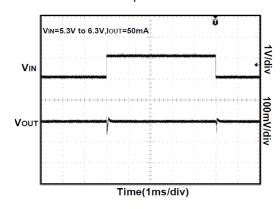
Parameter	Symbol	Cor	ditions	Min.	Тур.	Max.	Unit
Input Voltage	V_{IN}	V _{OUT} = 5.0V		2.5 ^{NOTE3}	-	36	V
Output Voltage Assuragy		I _{OUT} = 0.1mA		-2.5	0	2.5	%
Output Voltage Accuracy		I _{OUT} = 1mA,	Class A	-1.0	0	1.0	%
		No load	V _{IN} = V _{OUT} + 2V	-	2.5	5	
Ground Pin Current		NO load	V _{IN} = 36V	-	5.0	8	μΑ
		$I_{OUT} = 50 \text{mA}$		-	2.5	-	
Maximum Output Current ^{NOTE2}				150	-	-	mA
Dropout Voltage ^{NOTE3}	V _{DROP}	I _{OUT} = 150m.	A	-	1000	1600	mV
Line Regulation	ΔV_{OUT} $\Delta V_{\text{IN}} \times V_{\text{OUT}}$	$V_{IN} = V_{OUT} + I_{OUT} = 1mA$	2V to 36V,	-	0.001	0.012	%/V
Load Regulation	ΔVουτ	$V_{IN} = V_{OUT} + 2$ $I_{OUT} = 1 \text{mA t}$		-	11	20	mV
Power Supply Rejection	DODD	V _{OUT} = 5.0V,	f = 217Hz	-	57	-	-ID
Ratio	PSRR	I _{OUT} = 10mA	f = 1KHz	-	54	-	dB
Output Voltage Temperature	— • • • • •	I _{OUT} = 1mA	-0.0	-	70	-	ppm/°C
Coefficient ^{NOTE4}	$\Delta T_A \times V_{OUT}$	-40°C to +85°C					
THERMAL PROTECTION						I	T
Thermal Shutdown	T _{SHDN}			-	120	-	°C
Temperature							
SHUTDOWN EN Voltage Range	V _{EN}	-40°C to +85		-0.3		V _{IN} +0.3	V
EN Voltage Range	VEN			-0.3		VINTU.3	V
EN Input Threshold	VIH	V _{IN} = V _{OUT} + 2Vto 36V -40°C to +85°C		1.1	-	-	- V
EN Input Threshold	VIL	V _{IN} = V _{OUT} + 2Vto 36V -40°C to +85°C		-	-	0.4	V
EN Input Dies Current	I_{BH}	EN=36V		-	0.01	1	μΑ
EN Input Bias Current	I _{BL}	EN=0V, -40°C to +85°C		-	0.01	1	
Shutdown Supply Current	I _{Q(SHDN)}	EN=0V, -40°	°C to +85°C	-	1.0	2	μΑ
Start-Up TimeNOTE5	t str	$C_{OUT} = 1\mu F$,	No Load	-	230	-	μs

NOTE1: $V_{IN} = V_{OUT (NOMINAL)}$ or 2.5V, whichever is greater.

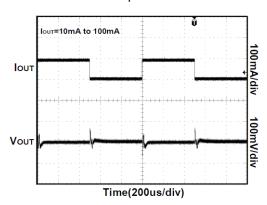
NOTE2: Maximum output current is affected by the PCB layout, size of metal trace, the thermal conduction path between metal layers, ambient temperature and the other environment factors of system. Attention should be paid to the dropout voltage when V_{IN} < V_{DROP}.

NOTE3: The dropout voltage is defined as V_{IN} - V_{OUT}, when V_{OUT} is 100mV below the value of V_{OUT} for V_{IN} = V_{OUT} (NOMINAL) + 2V.

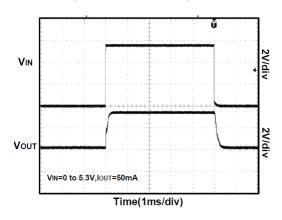
NOTE4: Output voltage temperature coefficient is defined as the worst-case voltage change divided by the total temperature range.

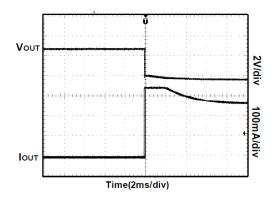

NOTE5: Time needed for V_{OUT} to reach 90% of final value.

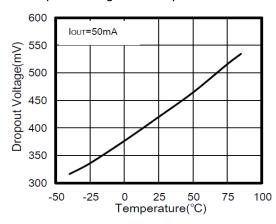
TYPICAL PERFORMANCE CHARACTERISTICS

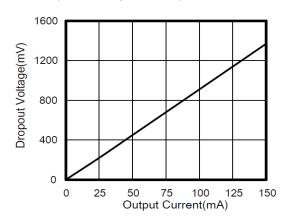

36V, 150mA, ULTRALOW POWER CONSUMPTION

 V_{IN} = 5.3V, V_{OUT} = 3.3V, C_{IN} = C_{OUT} = 1 μ F, T_A = 25°C, unless otherwise noted.

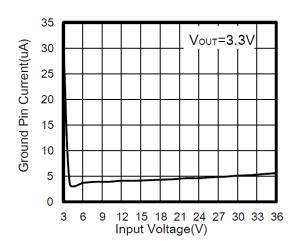

1. Line-Transient Response

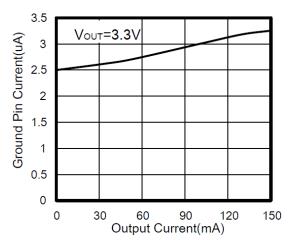

2. Load-Transient Response

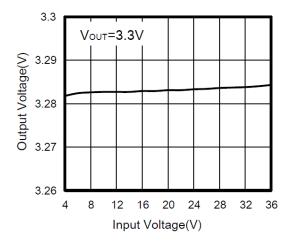

3. Power-Up/Power-Down Output Waveform


4. Output Short Waveform

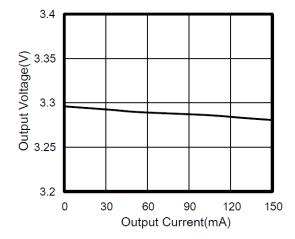
5. Dropout Voltage vs. Temperature

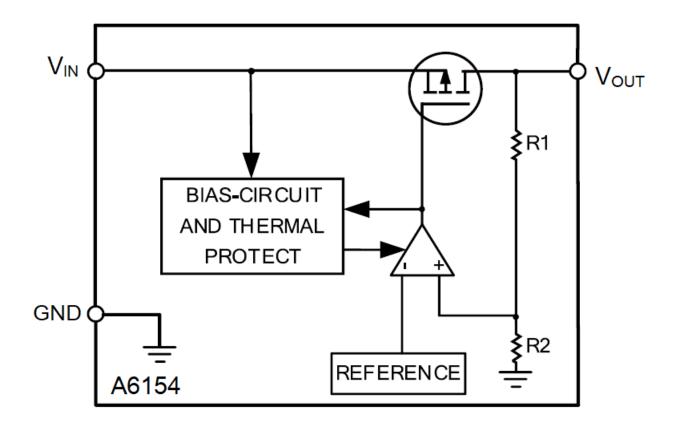



6. Dropout Voltage vs. Output Current


7. Ground Pin Current vs Input Voltage

8. Ground Pin Current vs Load Current




9. Line Regulation

10. Load Regulation(Vout=3.3V)

BLOCK DIAGRAM

DETAILED INFORMATION

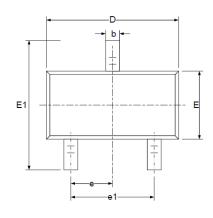
Overview

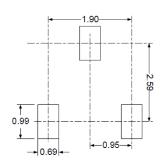
The A6154 low-dropout regulators (LDO) consumes only 2.5 µA of quiescent current at light load and delivers excellent line and load transient performance. These characteristics, combined with low noise and good PSRR with low dropout voltage, make this device ideal for portable consumer applications.

Thermal Considerations

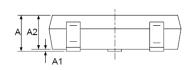
When the junction temperature is too high, the thermal protection circuitry sends a signal to the control logic that will shut down the IC. The IC will restart when the temperature has sufficiently cooled down. The maximum power dissipation is dependent on the thermal resistance of the case and the circuit board, the temperature difference between the die junction and the ambient air, and the rate of air flow. The GND pin must be connected to the ground plane for proper dissipation.

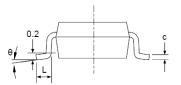
Operation with V_{IN} Lower Than 2.5V

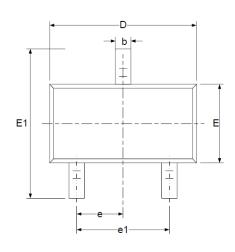

The device normally operates with input voltages above 2.5V. At input voltages below the 2.5V, the device does not operate.

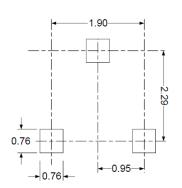

Operation with V_{IN} Larger Than 2.5V

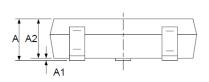
When V_{IN} is greater than 2.5V, if V_{IN} is also higher than the output set value plus the device dropout voltage, V_{OUT} is equal to the set value. Otherwise, V_{OUT} is equal to V_{IN} minus the dropout voltage.

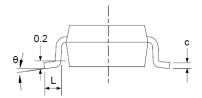

PACKAGE INFORMATION

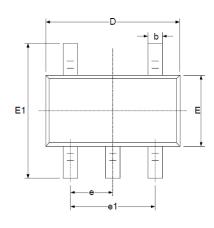

Dimension in SOT-23 (Unit: mm)

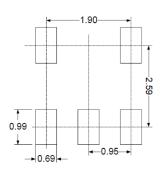

RECOMMENDED LAND PATTERN (Unit: mm)

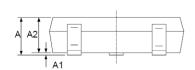


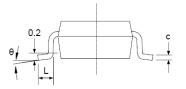

0	Dimensions In	Millimeters	
Symbol	Min	Max	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
Е	1.500	1.700	
E1	2.650	2.950	
е	0.950 BSC		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	

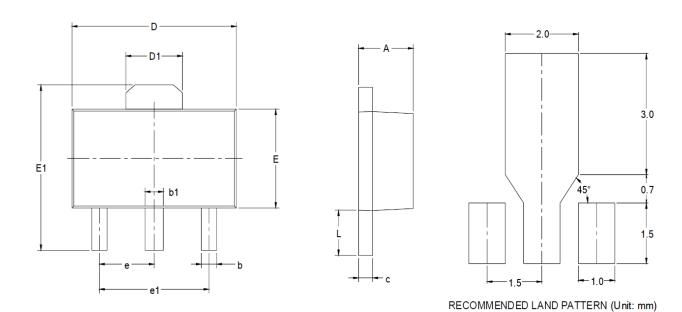

Dimension in SOT-23S (Unit: mm)


RECOMMENDED LAND PATTERN (Unit: mm)




Or make al	Dimensions Ir	n Millimeters	
Symbol	Min	Max	
Α	0.900	1.150	
A1	0.000	0.100	
A2	0.900	1.050	
b	0.300	0.500	
С	0.080	0.150	
D	2.800	3.000	
Е	1.200	1.400	
E1	2.250	2.550	
е	0.950 BSC		
e1	1.800	2.000	
L	0.300	0.500	
θ	0°	8°	


Dimension in SOT-25 (Unit: mm)


RECOMMENDED LAND PATTERN (Unit: mm)

Comple of	Dimensions In Millimeters		
Symbol	Min	Max	
Α	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
Е	1.500	1.700	
E1	2.650	2.950	
е	0.950 BSC		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	

Dimension in SOT89-3 (Unit: mm)

Cumhal	Dimensions	In Millimeters
Symbol	Min	Max
А	1.400	1.600
b	0.320	0.520
b1	0.400	0.580
С	0.350	0.440
D	4.400	4.600
D1	1.550 REF	
E	2.300	2.600
E1	3.940	4.250
е	1.500 BSC	
e1	3.000 BSC	
L	0.900	1.200

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.