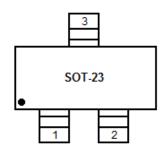
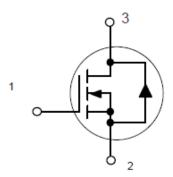


DESCRIPTION

The 2SB801 is available in SOT-23 package


FEATURES


Available in SOT-23 package

ORDERING INFORMATION

Package Type	Part Number			
SOT-23	2SB801			
Note	3,000pcs/Reel			
AiT provides all RoHS Compliant Products				

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{DSS} , Drain–Source Voltage	60Vdc
V_{DGR} , Drain–Gate Voltage (R _{GS} = 1.0 M Ω)	60Vdc
Drain Current	
I _D , Continuous T _C = 25°C ^{NOTE 1}	310mAdc
I _{DM} , Pulse t < 10us	1200mAdc
Gate-Source Voltage	
V _{GS} , Continuous	±20Vdc
V _{GSM} , Non–repetitive (tp ≤ 50µs)	±40Vpk

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Device Dissipation FR-5 Board ^{NOTE2}			
T _A = 25°C	P _D	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	Reja	556	°C/W
Total Device Dissipation Alumina SubstrateNOTE3			
T _A = 25°C	P _D	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	Reja	417	°C/W
Junction and Storage Temperature	T _J , T _{STG}	-55 ~ +150	°C

NOTE1: The Power Dissipation of the package may result in a lower continuous drain current.

NOTE2: FR-5 = $1.0 \times 0.75 \times 0.062$ in.

NOTE3: Alumina = $0.4 \times 0.3 \times 0.025$ in 99.5% alumina.

ELECTRICAL CHARACTERISTICS

 T_A = 25°C, unless otherwise noted

Parame		Symbol	Conditions	Min.	Тур.	Max.	Unit
OFF CHARACTERI	OFF CHARACTERISTICS						
Drain-Source Break	down Voltage	V _{(BR)DSS}	V _{GS} = 0, I _D = 10μAdc	60	-	-	Vdc
Zero Gate Voltage Drain Current	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _{DSS}	V _{GS} = 0, V _{DS} = 60Vdc	-	-	1.0 500	μAdc
Gate-Body Leakage Current, Forward		Igssf	V _{GS} = 20Vdc	-	-	100	nAdc
Gate-Body Leakage Current, Reverse		I _{GSSR}	V _{GS} = -20Vdc	-	-	-100	nAdc
ON CHARACTERIS	STICSNOTE4						
Gate Threshold Volt	age	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250μAdc	1.0	1.8	2.2	Vdc
On-State Drain Cur	rent	I _{D(on)}	V _{DS} ≥2.0V _{DS(on)} , V _{GS} =10Vdc	500	-	-	mA
Static Drain–Source Voltage	On-State	V _{DS(on)}	V _{GS} =10Vdc, I _D =500mAdc V _{GS} =5.0Vdc, I _D =50mAdc	-	-	3.75 0.375	Vdc
Static Drain–Source Resistance	On–State	R _{DS(on)}	V _{GS} =10V, I _D =500mAdc V _{GS} =5.0Vdc, I _D =50mAdc	-	1.5 1.7	2.5 2.5	Ohms
Forward Transconductance		g FS	V _{DS} ≥2.0V _{DS(on)} , I _D =200mAdc	80	-	-	mmhos
DYNAMIC CHARAC		<u> </u>	25 25(0.7), 2				
Input Capacitance		C _{iss}		-	17	50	
Output Capacitance		Coss	V _{DS} =25Vdc, V _{GS} =0,	-	10	25	pF
Reverse Transfer C	apacitance	Crss	f=1.0MHz	-	2.5	5.0	
SWITCHING CHAR	ACTERISTICS	NOTE4					
Turn-On Delay Time	е	t _{d(on)}	V_{DD} = 25Vdc , $I_{D} \approx 500$ mAdc R_{G} = 25 Ω , R_{L} = 50 Ω ,	-	7	20	ns
Turn-Off Delay Time	Off Dalay Time		V _{GEN} = 10V	-	11	40	113
BODY-DRAIN DIODE RATINGS							
Diode Forward On-	Voltage	VsD	I _S = 115mAdc, V _{GS} = 0V	-	-	-1.5	Vdc
Source Current Con	tinuous	ls	Body Diode	-	-	-115	mAdc
Source Current Puls	sed	I _{SM}		-	-	-800	mAdc

NOTE4: Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.

TYPICAL CHARACTERISTICS

Figure 1. Ohmic Region

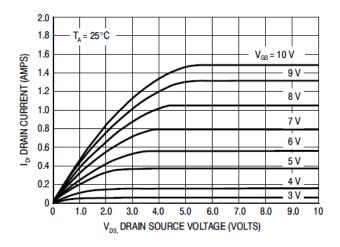


Figure 3. Temperature versus Static

Drain–Source On–Resistance

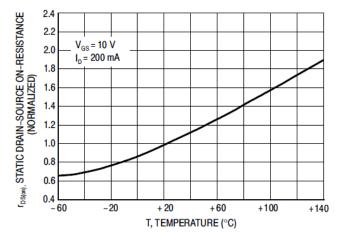
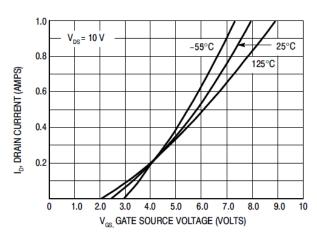
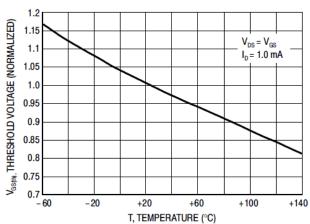
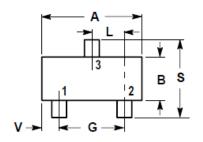
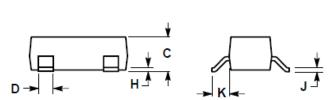
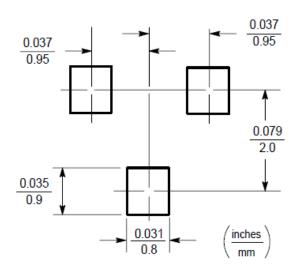


Figure 2. Transfer Characteristics


Figure 4. Temperature versus Gate
Threshold Voltage



PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

DIM	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.80	3.04	0.1102	0.1197	
В	1.20	1.40	0.0472	0.0551	
С	0.89	1.11	0.0350	0.0440	
D	0.37	0.50	0.0150	0.0200	
G	1.78	2.04	0.0701	0.0807	
Н	0.013	0.100	0.0005	0.0040	
J	0.085	0.177	0.0034	0.0070	
K	0.35	0.69	0.0140	0.0285	
L	0.89	1.02	0.0350	0.0401	
S	2.10	2.64	0.0830	0.1039	
V	0.45	0.60	0.0177	0.0236	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.