

DESCRIPTION

The A2327 is a 2.6W high efficiency filter-free class-D audio power amplifier that requires only three external components.

Features like 88% efficiency, -75dB PSRR, and improved RF-rectification immunity make the A2327 ideal for cellular handsets. In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the A2327.

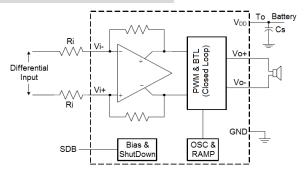
The A2327 is available in MSOP8, SOP8 and DFN8 packages.

ORDERING INFORMATION

Package Type	Part Number		
MSOP8	MCO	A2327MS8R	
SPQ: 3,000pcs/Reel	MS8	A2327MS8VR	
SOP8	MO	A2327M8R	
SPQ: 2,500pcs/Reel	M8	A2327M8VR	
DFN8	10	A2327J8R	
SPQ: 3,000pcs/Reel	J8	A2327J8VR	
Note	V: Halogen	free Package	
note	R: Tape & F	Reel	
AiT provides all R	oHS products		

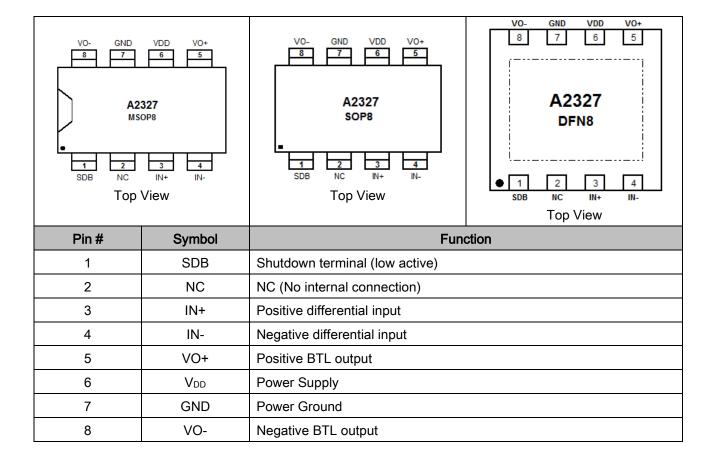
FEATURES

Efficiency With an 8Ω Speaker:


88% @ 400mW 80% @ 100mW

- 3.8mA Quiescent Current
- 0.4µA Shutdown Current
- Optimized PWM Output Stage Eliminates LC Output Filter
- Internally Generated 250kHz Switching Frequency Eliminates Capacitor and Resistor
- Improved PSRR (-75dB) and Wide Supply Voltage (2.5V to 5.5V) Eliminates Need for a Voltage Regulator
- Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor
- Improved CMRR Eliminates Two Input Coupling Capacitors
- Available in MSOP8, SOP8 and DFN8 packages

APPLICATION


- Mobile phone、PDA、MID
- MP3/4、PMP
- Portable electronic devices

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	-0.3V ~ 6V
Input Voltage	-0.3V ~ V _{DD} +0.3V
Storage Temperature	-65°C ~ +150°C
Operating Temperature Range	-40°C ~ +85°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

The following specifications apply for the circuit shown in Figure 1.

$T_A = 25^{\circ}C$, unless otherwise specified	$T_A = 25^{\circ}C$	unless	otherwise	specified
--	---------------------	--------	-----------	-----------

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Shutdown Current	Isd	V _{IN} =0V, V _{SDB} =0V, No Load	-	0.4	2	uA
		V_{DD} =2.5V, V_{IN} =0V, No Load	-	2.2	3.2	
Quiescent Current	lq	V _{DD} =3.6V, V _{IN} =0V, No Load	-	2.6	-	mA
		V _{DD} =5.5V, V _{IN} =0V, No Load	-	3.8	8	
Output Offect Veltere		V _{IN} =0V, A _V =2V/V,		0	25	
Output Offset Voltage	Vos	V _{DD} =2.5V to 5.5V	-	2	25	mV
Power Supply Rejection Ratio	PSRR	V _{DD} =2.5V to 5.5V	-	-75	-	dB
Common Mode Rejection		V _{DD} =2.5V to 5.5V,				
Ratio	CMRR	$V_{IC}=V_{DD}/2$ to 0.5V,	-	-68	-	dB
Ralio		V _{IC} =V _{DD} /2 to V _{DD} -0.8V				
Modulation Frequency	Fsw	V _{DD} =2.5V to 5.5V	200	250	300	kHz
Voltage Gain	Av	V _{DD} =2.5V to 5.5V	270k	300k	330k	V
Voltage Gall	~~	VDD-2.3V (0 3.3V	Rı	Rı	Rı	V
Resistance from SDB to GND	Rsdb		-	300	-	kΩ
Input Impedance	Zı		135	150	165	kΩ
Wake-up Time from	Twu	V _{DD} =3.6V	_	32	_	ms
Shutdown	1 000	VDD-0.0V		52		1113
Drain-Source Resistance		V _{DD} =2.5V	-	700	-	
(on-state)	RDS(ON)	V _{DD} =3.6V	-	500	-	mΩ
(UII-SIALE)		V _{DD} =5.5V	-	400	-	
Shutdown Voltage Input High	Vsdih		1.3	-	-	V
Shutdown Voltage Input Low	V _{SDIL}		-	-	0.4	V

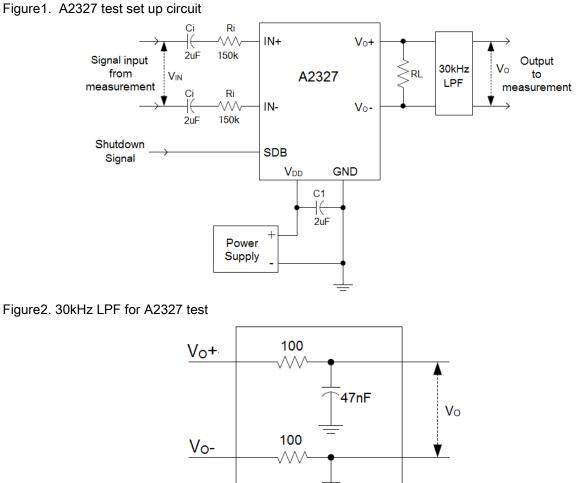
REV2.2 - NOV 2008 RELEASED, APR 2020 UPDATED -

OPERATING CHARACTERISTICS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Power Po		THD+N=10%, f=1kHz, RL=4 Ω	-	2.60	-	
	_	THD+N=1%, f=1kHz, RL=4 Ω	-	2.10	-	14/
	Po	THD+N=10%, f=1kHz, R∟=8Ω	I	1.60	-	W
		THD+N=1%, f=1kHz, R∟=8Ω	I	1.30	-	
Total Harmonic						0/
Distortion + Noise	THD+N	Po=1.0Wrms, f=1kHz, R∟=8Ω	-	0.21	-	%
Signal-to-Noise Ratio	SNR	V_{DD} =5V, Po=1.0Wrms, RL=8 Ω	-	91	-	dB

 V_{DD} =5V, RI=150k Ω , TA=25°C, unless otherwise specified.

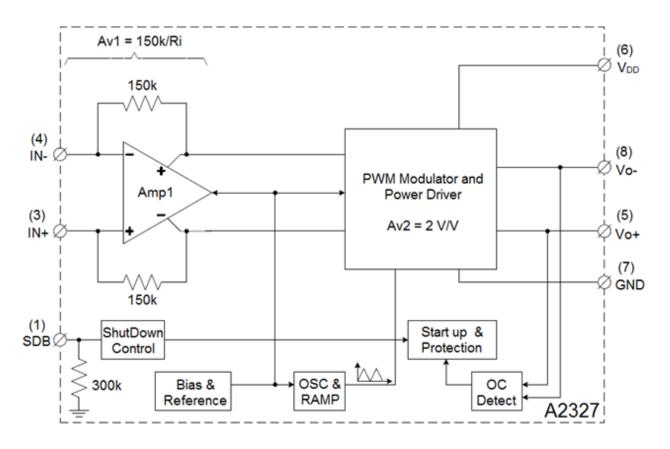
 V_{DD} =3.6V, R_I=150k Ω , T_A=25°C, unless otherwise specified.


Parameter	Symbol	Condition	S	Min.	Тур.	Max.	Unit
		THD+N=10%, f=1kHz, R∟=4Ω		-	1.35	-	
	THD+N=1%, f=1kHz, R∟=4Ω		-	1.08	-	147	
Output Power	Po	THD+N=10%, f=1kHz, F	R∟=8Ω	-	0.85	-	W
		THD+N=1%, f=1kHz, R∟	-=8Ω	-	0.69	-	
Total Harmonic Distortion + Noise	THD+N	P₀=0.5Wrms, f=1kHz, R∟=8Ω		-	0.21	-	%
Supply Ripple Rejection Ratio	Ksvr	V _{DD} =3.6V, input ac-grounded with C _I =2uF, f=217Hz, V(Ripple)=200mV _{PP}		-	-65	-	dB
	Ň	V_{DD} = 3.6V, input ac-	No weighting	-	100	-	
Output Voltage Noise	Vn	grounded with Ci=2uF, f=20~20kHz	A weighting	-	75	-	uV _{RMS}
Common Mode Rejection Ratio	CMRR	V _{DD} =3.6V, V _{IC} =1V _{PP} , f=217Hz		-	-70	-	dB

 V_{DD} =2.5V, R_I=150k Ω , T_A=25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Power		THD+N=10%, f=1kHz, R∟=4Ω	-	0.60	-	
	P	THD+N=1%, f=1kHz, R _L =4 Ω	-	0.51	-	14/
	Po	THD+N=10%, f=1kHz, R∟=8Ω	-	0.40	-	W
		THD+N=1%, f=1kHz, R∟=8Ω	-	0.33	-	
Total Harmonic Distortion + Noise	THD+N	Po=0.2Wrms, f=1kHz, R∟=8Ω	-	0.21	-	%

TEST CIRCUIT


47nF

30kHz LPF

NOTE1: Cs should be placed as close as possible to VDD/GND pad of the device NOTE2: CI should be shorted for any Common-Mode input voltage measurement NOTE3: A 33uH inductor should be used in series with RL for efficiency measurement NOTE4: The 30kHz LPF (shown in figure 1) is required even if the analyzer has an internal LPF

BLOCK DIAGRAM

NOTE: Total Voltage Gain = Av1 x Av2 = 2 x $\frac{150k}{Ri}$

DETAILED INFORMATION

Application Circuit

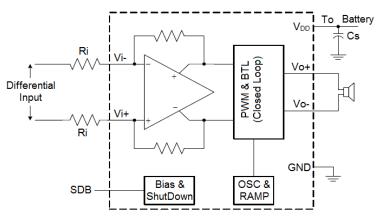


Figure 3. A2327 Application Schematic With Differential Input

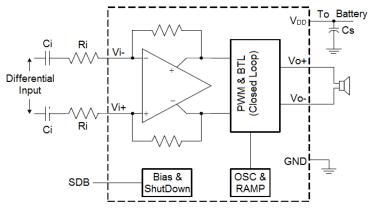


Figure 4. A2327 Application Schematic With Differential Input and Input Capacitors



Figure 5. A2327 Application Schematic With Single-Ended Input

Component Recommended

Due to the weak noise immunity of the single-ended input application, the differential input application should be used whenever possible. The typical component values are listed in the table:

Rı	Cı	Cs
150k	3.3nF	2uF

- (1) C_I should have a tolerance of $\pm 10\%$ or better to reduce impedance mismatch.
- (2) Use 1% tolerance resistors or better to keep the performance optimized, and place the R₁ close to the device to limit noise injection on the high-impedance nodes.

Input Resistors (R_I) & Capacitors (C_I)

The input resistors (R₁) set the total voltage gain of the amplifier according to Formula 1.

Gain =
$$\frac{2 \times 150 k\Omega}{R_I} \left(\frac{V}{V}\right)$$

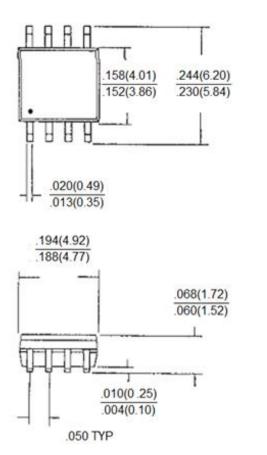
The input resistor matching directly affects the CMRR, PSRR, and the second harmonic distortion cancellation. If a differential signal source is used, and the signal is biased from $0.5V \sim V_{DD}$ -0.8V (shown in Figure3), the input capacitor (C₁) is not required.

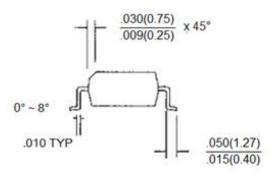
Formula 1

If the input signal is not biased within the recommended common-mode input range in differential input application (shown in Figure4), or in a single-ended input application (shown in Figure5), the input coupling capacitors are required.

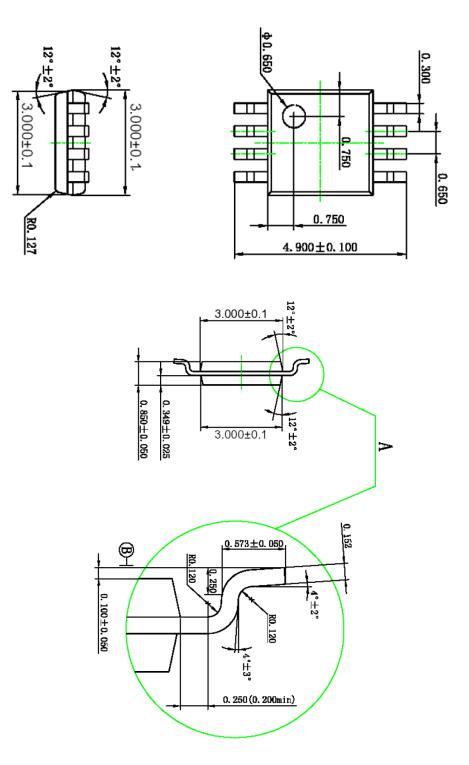
If the input coupling capacitors are used, the R_I and C_I form a high-pass filter (HPF). The corner frequency (f_C) of the HPF can be calculated by *Formula 2*

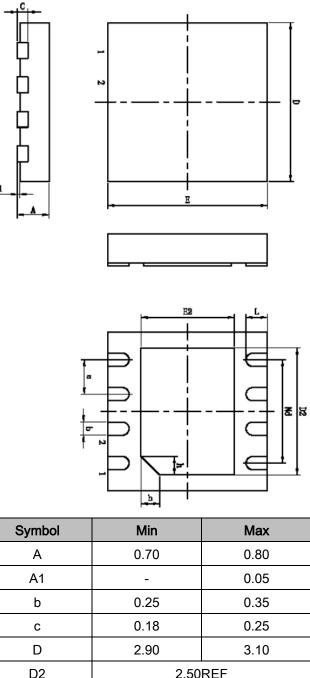
$$f_{C} = \frac{1}{2\pi x R_{I} x C_{I}} (Hz)$$
 Formula 2


Decoupling Capacitor (Cs)


A good low equivalent-series-resistance (ESR) ceramic capacitor (C_S), used as power supply decoupling capacitor (C_S), is required for high power supply rejection (PSRR), high efficiency and low total harmonic distortion (THD). C_S is 2µF, placed as close as possible to the device V_{DD} pin.

PACKAGE INFORMATION


Dimension in SOP8 (Unit: mm)


Dimension in MSOP8 (Unit: mm)

A)

Dimension in DFN8 (Unit: mm)

С	0.18	0.25		
D	2.90	3.10		
D2	2.50REF			
е	0.65BSC			
Nd	1.95BSC			
E	2.90	3.10		
E2	1.55REF			
L	0.30	0.50		
h	0.20	0.30		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.