

DESCRIPTION

The A4051 is a complete constant current & constant voltage linear charger for single cell lithium-ion batteries. Its PSOP8 package and low external component count make the A4051 ideally suited for portable applications. Furthermore, the A4051 is specifically designed to work within USB power specifications.

No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The A4051 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

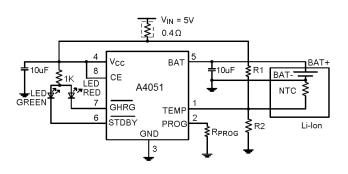
When the input supply (wall adapter or USB supply) is removed, the A4051 automatically enters a low current state, dropping the battery drain current to less than 0.5uA. The A4051 can be put into shutdown mode, reducing the supply current to 50uA.

Other features include Battery temperature monitor, under-voltage lockout, automatic recharge and two status pins to indicate charge and charge termination.

The A4051 is available in PSOP8 package

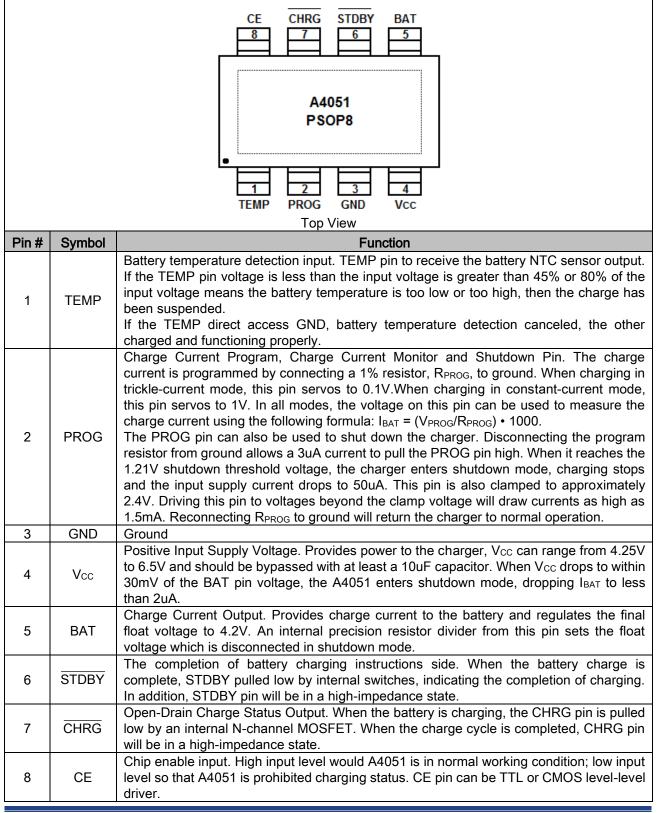
ORDERING INFORMATION

Package Type	Part Number			
PSOP8	MP8	A4051MP8R		
SPQ: 4,000pcs/Reel	IVIPO	A4051MP8VR		
Note	V: Halogen free package R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Programmable Charge Current Up to 1000mA
- 1/10th of the constant charge current
- No MOSFET, Sense Resistor or Blocking Diode Required
- Complete Linear Charger in PSOP8 Package for single Cell Lithium-Ion Batteries
- Constant-Current/Constant-Voltage Operation with Thermal Regulation to Maximize Charge Rate Without Risk of Overheating
- Charges Single Cell Li-Ion Batteries Directly from USB Port
- Preset 4.2V Charge Voltage
- Charge Current Monitor Output for Gas Gauging
- Automatic Recharge
- Charge state pairs of output, no battery and fault status display
- C/10 Charge Termination
- 50uA Supply Current in Shutdown
- 2.9V Trickle Charge Threshold
- Soft-Start Limits Inrush Current
- Battery temperature monitoring function
- Available in PSOP8 package

APPLICATION


- Cellular Telephones, PDAs, MP3 /MP4 Players
- Charging Docks and Cradles
- Bluetooth 、GPS Applications

TYPICAL APPLICATION

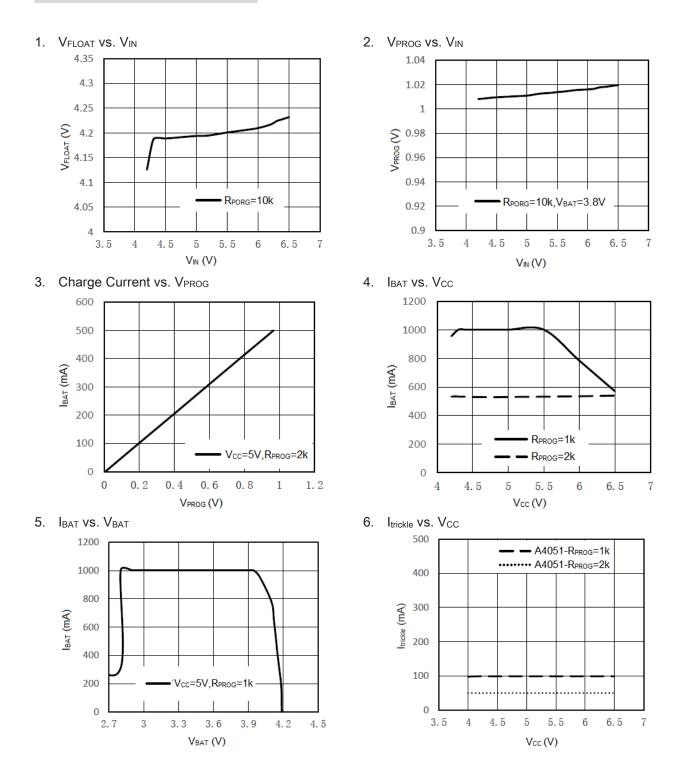
PIN DESCRIPTION

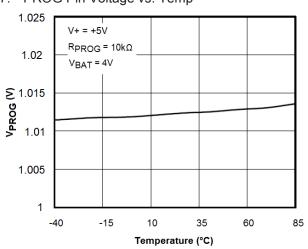
ABSOLUTE MAXIMUM RATINGS

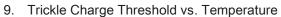
V _{SS} -0.3 V ~ V _{SS} +8V
$V_{\text{SS}}\text{-}0.3 \lor \text{-} V_{\text{CC}}\text{+}0.3 \lor$
V _{SS} -0.3 V ~ 8V
V _{SS} -0.3V ~ V _{SS} +8V
1400mA
1400uA
-40°C ~ +85°C
-65°C ~ +125°C
260°C

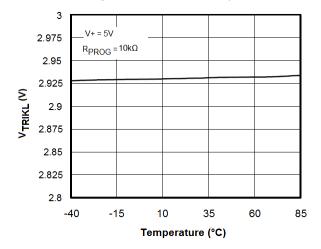
Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

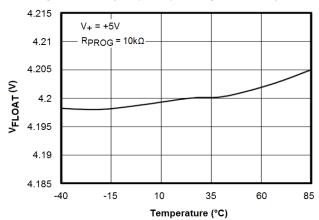
ELECTRICAL CHARACTERISTICS


Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input Supply Voltage	Vcc		4.25	-	6.5	V	
Input Supply Current	lcc	Charge mode, RPROG=10k	-	350	2000	uA	
		Standby mode - 150		500	uA		
		Shutdown mode					
		(R _{PROG} not connected,	-	50	100	uA	
		V _{CC} <v<sub>BAT or V_{CC}<v<sub>UV)</v<sub></v<sub>					
Regulated Output Voltage	VFLOAT	T _A =25°C, I _{BAT} =40mA	4.177	-	4.263	V	
BAT Pin Current	Іват	RPROG =2k,Current mode	450	500	550	mA	
		RPROG =1k,Current mode	900	1000	1100		
		Standby mode, V _{BAT} =4.3V	0	-2.5	-6	uA	
		Shutdown mode	-	-1	-2.5		
		Sleep mode, V _{CC} =0V	-	-0.05	-0.5		
Trickle Charge Current	I _{TRIKL}	V _{BAT} <v<sub>TRIKL, R_{PROG}=1k</v<sub>	90	100	110	mA	
Trickle Charge Threshold	VTRIKL	R _{PROG} =10k, V _{BAT} Rising	2.78	2.9	3.0	V	
Voltage	VIRIKL	TYPRUG - TOK, VBAT TUSING	2.70	2.9	5.0	v	
Trickle Voltage Hysteresis	VTRHYS	R _{PROG} =10k	118	135	157	mV	
Voltage	VIKHIS	NERUG - IUN	110	100	157	111 V	

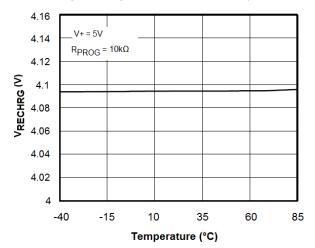

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
V _{CC} Undervoltage Lockout Threshold	Vuv	From V_{cc} low to high	3.6	3.8	3.93	V	
V _{CC} Undervoltage Lockout Hysteresis	Vuvhys		150	200	300	mV	
V _{CC} -V _{BAT} Lockout Threshold		Vcc from low to high	-	250	-	mV	
Voltage	VASD	Vcc from high to low	5	100	-		
C/10 Termination Current	ITERM	R _{PROG} =1k	0.085	0.11	0.125	mA/mA	
Threshold	TERM	R _{PROG} =2k	0.085	0.11	0.125	ma/ma	
PROG pin Voltage	VPROG	RPROG =1k, Current mode	0.93	1.0	1.07	V	
CHRG pin Output Low Voltage	VCHRG	ICHRG=2.5mA	-	0.35	0.8	V	
STDBY pin Output Low Voltage	VSTDBY	I _{STDBY} =2.5mA	-	0.35	0.8	V	
Recharge Battery Threshold Voltage	ΔV_{RECG}	Vfloat - Vrechrg	50	100	200	mV	
CE High Voltage	$V_{\text{CE-H}}$		1.2	-	-	V	
CE Low Voltage	Vce-l		-	-	0.6	V	
TEMP pin Voltage of The High-end Flip	V _{TEMP-H}		-	80	82	%V _{CC}	
TEMP Pin Voltage of The Low-end Flip	VTEMP-L		42	45	-	%Vcc	
Limited Temperature Patterns in The Junction Temperature	TLIM		-	145	-	°C	


TYPICAL CHARACTERISTICS

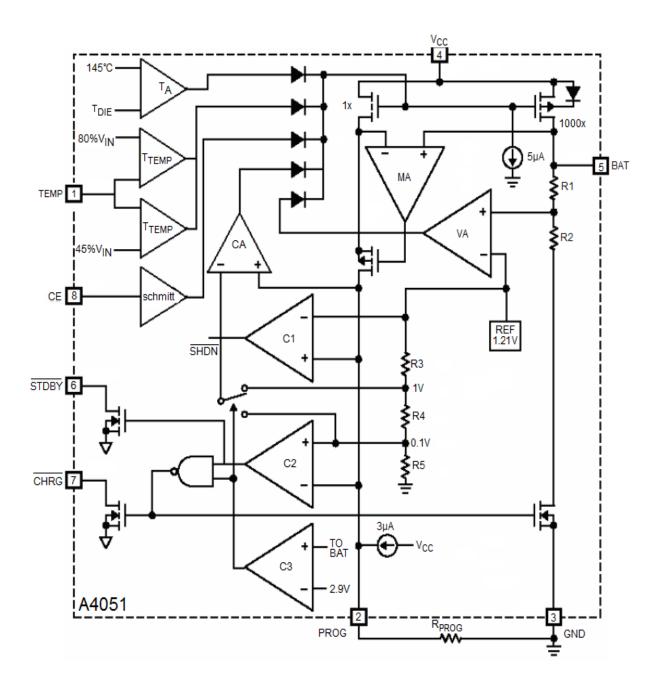




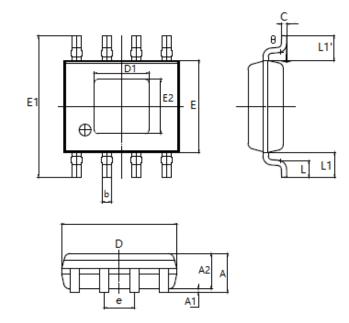
7. PROG Pin Voltage vs. Temp



8. Regulated Output (Float) Voltage vs. Temp



10. Recharge Voltage Threshold vs. Temperature


BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in PSOP8 Package (Unit: mm)

Ourseh al	Millim	eters	Inches			
Symbol	Min	Max	Min	Max		
A	1.350	1.750	0.053	0.069		
A1	0.050	0.150	0.002	0.006		
A2	1.350	1.550	0.053	0.061		
b	0.306	0.510	0.012	0.020		
С	0.170	0.250	0.007	0.010		
D	4.700	5.100	0.185	0.200		
D1	2.170	2.400	0.085	0.094		
E	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
E2	2.172	2.400	0.090	0.099		
е	1.270	1.270 ± 0.13		± 0.005		
L	0.400	1.270	0.016	0.050		
L1	1.025 ± 0.2		0.0404	± 0.007		
L1-L1′	-	0.12	-	0.005		
θ	0°	8°	0°	8°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.