

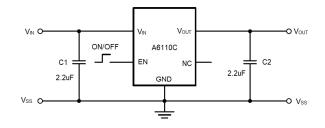
DESCRIPTION

The A6110C series are highly accurate, low noise, low dropout and very fast turn-on times CMOS LDO Voltage Regulators. The A6110C includes a reference voltage source, error amplifiers, driver transistors, current limiters and phase compensators. The A6110C's current limiters' foldback circuit also operates as a short protect for the output current limiter and. the output pin. The A6110C series is also fully compatible with low ESR ceramic capacitors, reducing cost and improving output stability. This high level of output stability is maintained even during frequent load fluctuations, due to the excellent transient response performance and high PSRR achieved across a broad range of frequencies. The EN function allows the output of regulator to be turned off, resulting in greatly reduced power consumption.

The A6110C is available in SOT-25 and SOT89-5 packages.

ORDER INFORMATION

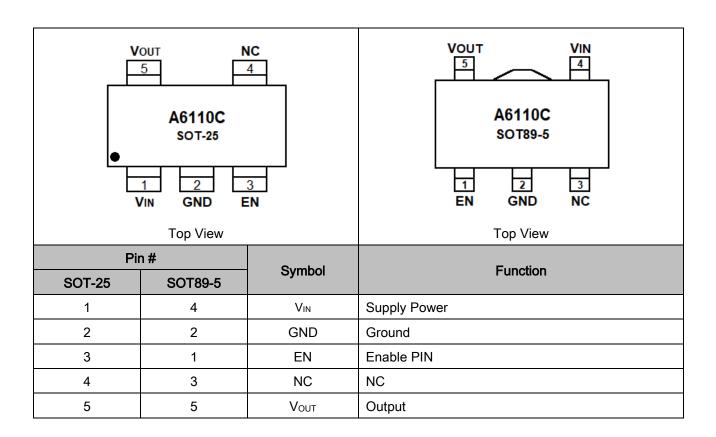
Package Type	Part Number		
SOT-25		A6110CE5R-XX	
SPQ: 3,000pcs/Reel	E5	A6110CE5VR-XX	
SOT89-5	VE	A6110CK5R-XX	
SPQ: 1,000pcs/Reel	K5	A6110CK5VR-XX	
	XX: Output Voltage		
Note	V: Halogen free Package		
R: Tap		e & Reel	
AiT provides all RoHS products			


FEATURES

- High Ripple Rejection: 60dB (1kHz)
- Low noise: 50uV_{RMS}(I_{OUT}=30mA,10Hz-100kHz)
- Output Voltage Range: 0.9V to 5.0V (selectable in 100mV steps)
- Highly Accurate: ± 2%
- Dropout Voltage: 70mV @ 100mA (3.3V type)
- Low Power Consumption: 30μA (TYP.)
- Maximum Output Current : 1000mA
- Standby Current : less than 1µA (V_{IN}≥V_{OUT}+1V)
- Internal protector: current limiter
- Internal discharge MOS
- Available in SOT-25 and SOT89-5 packages.

APPLICATION

- CD-ROMs, CD-R/RW Drivers
- DVD Drivers
- HDD Drivers
- Digital Camera, Video Card
- Portable AV Ses
- Battery supplied system


TYPICAL APPLICATION

REV1.0 - JUN 2019 RELEASED - - 1 -

PIN DESCRIPTION

REV1.0 - JUN 2019 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

V _{IN} , Input Voltage		-0.3V ~ +8V	
V _{ON/OFF} , Input Voltage		$-0.3V \sim V_{IN} + 0.3V$	
V _{оит} , Output Voltage		-0.3V ~ V _{IN} +0.3V	
P _D , Power Dissipation	SOT-25	300mW	
	SOT89-5	500mW	
T _{OPR} , Operating Ambient Temperature		-40°C ~ +85°C	
T _{STG} , Storage Temperature		-40°C ~ +125°C	

Stresses above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

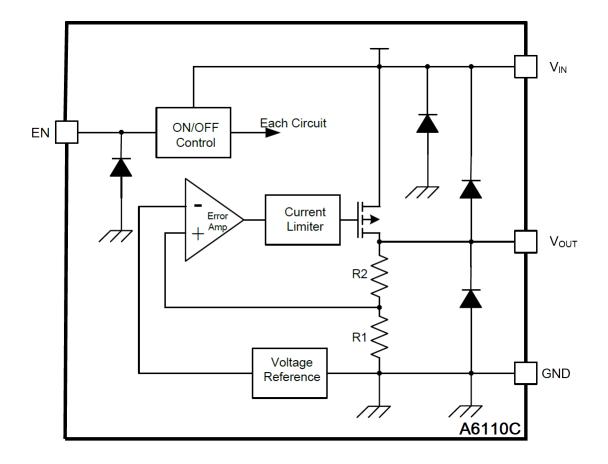
THERMAL RESISTANCE

Package	$\Theta_{ m JA}$	θις
SOT-25	250°C/W	130°C/W

NOTE: Thermal Resistance is specified with approximately 1 square of 1 oz copper.

REV1.0 - JUN 2019 RELEASED - - 3 -

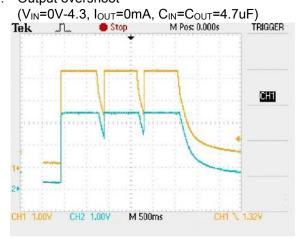
ELECTRICAL CHARACTERISTICS


T_A=25°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Output Voltage	Vout(e)	$V_{IN} = V_{OUT(S)} + 1.0V,$	V _{OUT(S)}	V _{OUT(S)}	V _{OUT(S)}	V
		I _{OUT} = 30mA	×0.98	• 001(3)	×1.02	
Output Current	I _{оит}	V _{IN} ≥ V _{OUT(S)} + 1.0V	0.7	1	1.5	Α
D 11/1	V _{DROP}	I _{OUT} = 30mA	-	0.015	0.023	V
Dropout Voltage		I _{OUT} = 100mA	-	0.070	0.085	
Line Regulation	ΔV_{OUT1}	$V_{OUT(S)} + 0.5V \le V_{IN} \le 7V$,		0.01	0.20	%/V
	$\Delta V_{IN} \times V_{OUT}$	I _{OUT} = 30mA	-			
	۸۱/	$V_{IN} = V_{OUT(S)} + 1.0V$		15	60	mV
Load Regulation	$\Delta V_{ ext{OUT2}}$	1.0mA ≤ I _{OUT} ≤100mA	-			
Output Voltage	A) /	$V_{IN} = V_{OUT(S)} + 1.0V,$		±100	-	ppm/°C
Temperature	ΔV _{OUT}	I _{OUT} = 10mA	-			
Characteristics	$\Delta T_A \times V_{OUT}$	-40°C ≤ T _A ≤ 85°C				
Supply Current	Iss ₁	V _{IN} = V _{OUT(S)} + 1.0V	-	30	-	μΑ
Input Voltage	V _{IN}		2.0	_	7.0	V
		$V_{IN} = V_{OUT(S)} + 1.0V,$				
Ripple-Rejection	PSRR	f = 1kHz	-	60	-	dB
		$V_{RIP} = 0.5Vrms$, $I_{OUT} = 50mA$				
Output Noise	en	I _{OUT} = 30mA,10HZ-100kHz	-	50	-	uV _{RMS}
Output Short	1	$V_{IN} = V_{EN} = V_{OUT(S)} + 1.0V,$		100	-	mA
Current	Ishort	V _{OUT} = 0V	-			
Output Current	1	$V_{IN} = V_{OUT(S)} + 1.0V,$	-	1.3	-	А
Limited	Ішм	V _{EN} = ON				
EN "High" Voltage	V _{ENH}		1.3	_	_	V
EN "Low" Voltage	V _{ENL}		-	-	0.25	V
EN "High Current	I _{ENH}	$V_{IN} = V_{EN} = V_{OUT(T)} + 1V$	-0.1	-	0.1	μA
EN "Low Current	lenl	$V_{IN} = V_{OUT(T)} + 1V,$	0.1	-	0.1	μА
		V _{EN} = V _{SS}	-0.1			

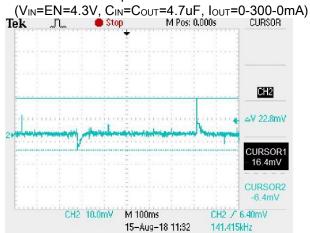
REV1.0 - JUN 2019 RELEASED - - 4 -

BLOCK DIAGRAM

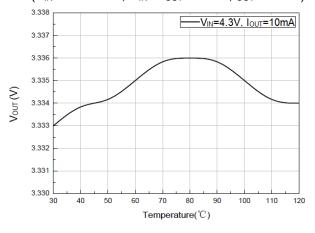


REV1.0 - JUN 2019 RELEASED - - 5 -

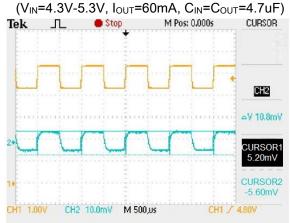
TYPICAL PERFORMANCE CHARACTERISTICS


V_{OUT}=3.3V

Output overshoot

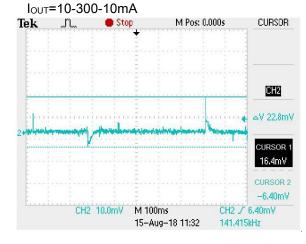

Channel 1: Input, Channel 2: Output

3. Load transient response



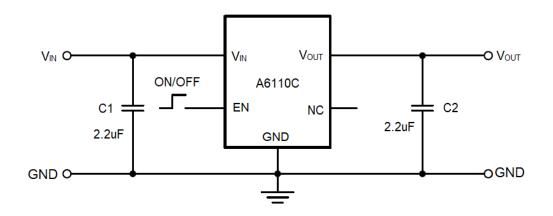
5. Output Voltage vs. Temperature

 $(V_{IN} = EN = 4.3V, C_{IN} = C_{OUT} = 4.7uF, I_{OUT} = 10mA)$



2. Input voltage transient response

Channel 1: Input, Channel 2: Output


4. V_{IN} = EN =4.3V, C_{IN} = C_{OUT} =4.7uF,

REV1.0 - JUN 2019 RELEASED - - 6 -

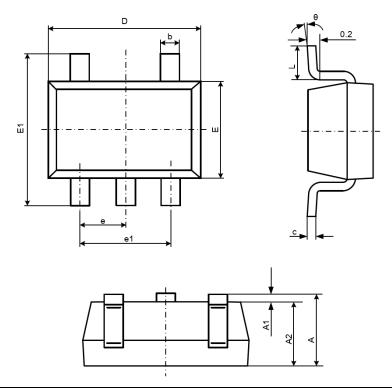
APPLICATION INFORMATION

Setting the Input Capacitor and the Output Capacitor

Input capacitors(C_{IN})and output capacitors(C_{OUT}) are recommended to use more than 1uF, which can ensure the stability of the system

PCB Layout

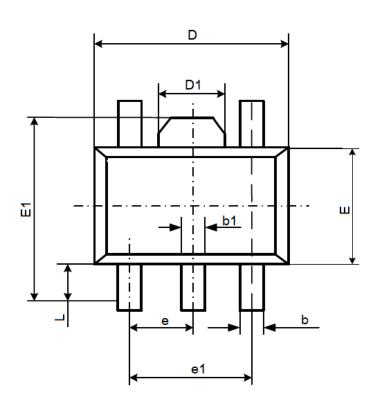
In order to get better use effect, the main points for attention of PCB layout are as follows:

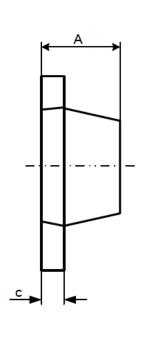

- 1. The input and output capacitors are as close as possible to the chip pins.
- 2. The wiring of V_{IN} and V_{OUT} should be as thick as possible to reduce the wiring resistance and improve the load performance.
- 3. The PCB needs to do heat dissipation to ensure the normal operation of the chip

REV1.0 - JUN 2019 RELEASED - - 7 -

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)




Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

REV1.0 - JUN 2019 RELEASED - - 8 -

Dimension in SOT89-5 (Unit: mm)

Symbol	Millimeters		Inches		
	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.360	0.560	0.014	0.022	
С	0.350	0.400	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.400	1.800	0.055	0.071	
Е	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060 TYP		
e1	2.900	3.100	0.114	0.122	
L	0.900	1.100	0.035	0.043	

REV1.0 - JUN 2019 RELEASED - - 9 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUN 2019 RELEASED - - 10 -