DESCRIPTION

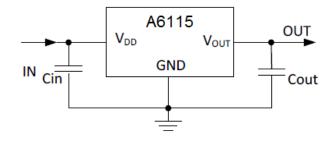
A6115 series are a group of positive voltage output, high precise, and low power consumption voltage regulator. Voltages are selectable in 100mV steps within a range of 1.2V to 5.0V. It also can be customized on command.

A6115 series have excellent load and line transient response and good temperature characteristics, which can assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within ±2%.

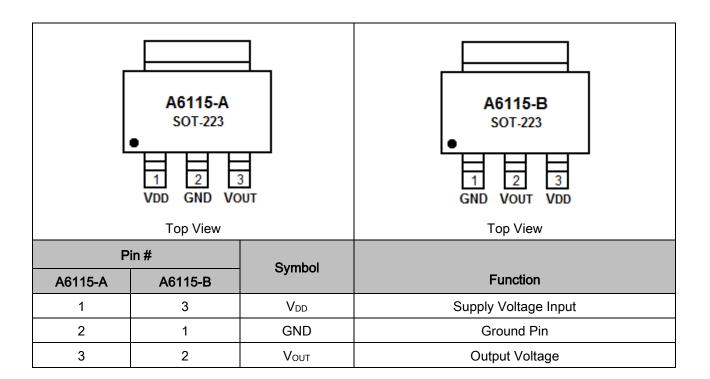
The A6115 is available in SOT-223 package.

ORDERING INFORMATION

Package Type	Part Number		
SOT-223	N	A6115NR-XXZ	
SPQ: 2,500pcs/Reel	IN	A6115NVR-XXZ	
Note	XX: Output Voltage		
	25=2.5V, 33=3.3V		
	Z: Pin Define		
	See Pin Description		
	R: Tape & Reel		
	V: Halogen free Package		
Suffix " V " means Halogen free Package			


FEATURES

- Low Quiescent Current: 100uA at 5V
- High PSRR: 70dB range to 1kHz
- Low Output Noise: 44uVRMS
- Low Dropout: 300mV at 1A load
- Maximum output current: 1.5A
- Highly Accurate: ±2%
- Low ESR Ceramic Capacitor Compatible
- Available in SOT-223 package


APPLICATION

- Reference Voltage Source
- Battery Powered Equipment
- PC Peripherals
- Wireless Devices
- Instrumentation

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Max Input Voltage		8V
T _J , Max Operating Junction Temperature		145°C
T _A , Ambient Temperature		-40°C~85°C
Package Thermal Resistance	SOT-223	20°C/W
Ts, Storage Temperature		-40°C~150°C
Lead Temperature & Time		260°C, 10 Sec

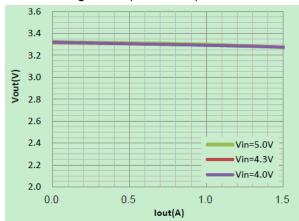
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

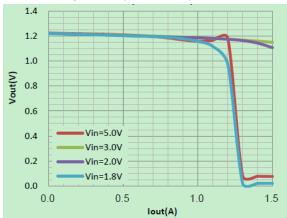
Parameter	Symbol	Value
Input Voltage Range		Max. 6V
Ambient Temperature		-40°C~85°C
Operating Junction Temperature	TJ	125°C

ELECTRICAL CHARACTERISTICS

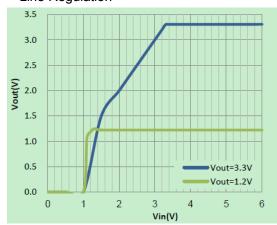
Test Conditions: C_{IN} =4.7uF, C_{OUT} =4.7uF, T_A =25°C, unless otherwise specified.

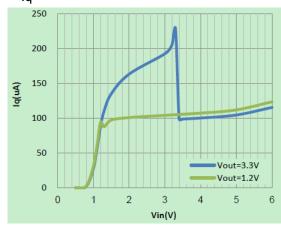

Parameter	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Input Voltage	V _{DD}			1.5*	-	6	V
Output Voltage	Vouт	V _{OUT} >1.5		Vouт		Vouт	· V
			V _{DD} =Set V _{OUT} +1V	x 0.98	\/	x1.02	
		\/	1mA≤l _{ουτ} ≤10mA	V _{OUT}	Vout	V _{OUT}	V
		V _{OUT} <=1.5		- 0.03		+ 0.03	
Maximum Output Current	lоит (мах.)**	V _{DD} -V _{OUT} =1V		1.5	-	-	A
Dropout Voltage	V _{DROP}	Vоит =3.3V, Iоит=1A		-	300	500	mV
Line Regulation	ΔV _{OUT}	I _{OUT} =10mA 4V≤V _{DD} ≤6V		-	0.05	0.2	%/V
	$\Delta V_{IN} \times V_{OUT}$						
Load Population	Δ V_OUT	V _{DD} =Set V _O	υτ+1V	_	30	60	mV
Load Regulation ΔV_{OUT}		1mA≤louт≤2.5A		1	30	60	IIIV
Supply Current	ls	V _{DD} =Set V _{OUT} +1V		_	100	150	uA
опрріу оптені	Vour Floating		ng	_	100	130	u/\
Output Voltage	ΔV _{OUT}	I _{OUT} =10mA					
Temperature	$\Delta T \times V_{OUT}$			-	±100	-	ppm/°C
Coefficient							
Ripple Rejection	PSRR	f=100Hz, Ripple=0.5Vp-p, V _{DD} =Set V _{OUT} +1V			70		dB
				_	, 0	_	ub_
Output Noise	en	BW=10Hz~100kHz		-	44	-	uVrms

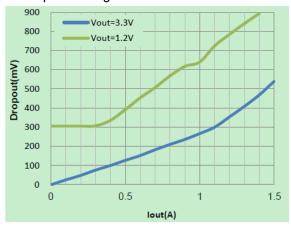
NOTE: *I_{OUT}=500mA@V_{OUT}=1.2V

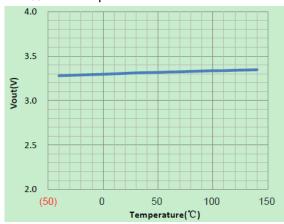

^{**}The maximum power rating of each package is a constant, so along with the change of I_{LOAD} , the V_{DD} - V_{OUT} should be controlled to a certain range to ensure the normal operation.

TYPICAL PERFORMANCE CHARACTERISTIC

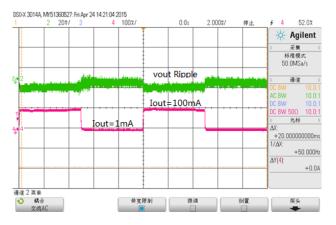

1. Load Regulation (Vout=3.3V)


2. Load Regulation (Vout=1.2V)

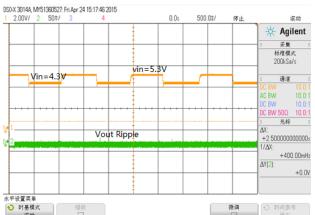

3. Line Regulation

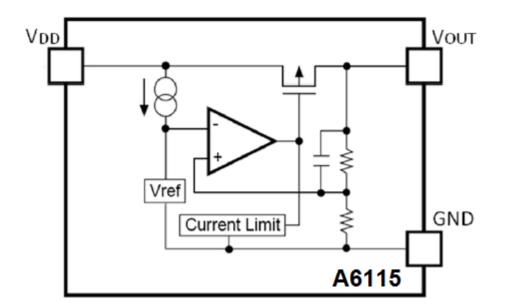

4. Iq

5. Dropout Voltage



6. Vout vs. Temperature

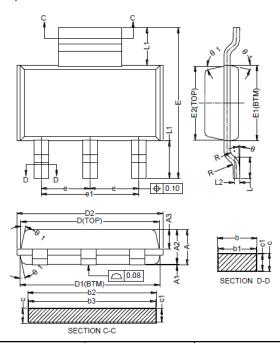



7. Load Transient Response (V_{IN}=5V,V_{OUT}=3.3V) C_{IN}=1uF,C_{OUT}=1uF,I_{OUT}=1mA-100mA

8. Line Transient Response(V_{IN}=5V,V_{OUT}=3.3V) C_{IN}=1uF,C_{OUT}=1uF,I_{OUT}=10mA,V_{IN}=4.3V-5.3V

BLOCK DIAGRAM

THERMAL CONSIDERATIONS


We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by A6115 is very large. A6115 series uses SOT-223 package type and its thermal resistance is about 20°C/W. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30°C/W. So the total thermal resistance is about 20°C/W + 30°C/W. In this case, the power dissipation should be limited less than 1.2W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper area in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of A6115 could allow on itself is less than 1W. And furthermore, if the A6115 chip did work at junction temperature higher than 125°C under such condition and no lifetime is guaranteed.

CURRENT LIMIT MODE

Current Limit module can keep chip and power system away from danger when load current is too large. When Vout decrease the Short Circuit Current will fold back to a small value.

PACKAGE INFORMATION

Dimension in SOT-223 (Unit: mm)

Symbol	Min	Max		
Α	-	1.80		
A1	0.02	0.10		
A2	1.50	1.70		
A3	0.80	1.00		
b	0.67	0.80		
b1	0.66	0.76		
b2	2.96	3.09		
b3	2.95	3.05		
С	0.30	0.35		
c1	0.29	0.31		
D	6.48	6.58		
D1	6.55	6.65		
D2	-	7.05		
E	6.80	7.20		
E1	3.40	3.60		
E2	3.33	3.53		
е	2.30 (BSC)			
e1	4.60 (BSC)			
L	0.80	1.20		
L1	1.750(REF)			
L2	0.250(BSC)			
R	0.10	-		
R1	0.10	-		
θ	0°	8°		
θ1	10°	14°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.