

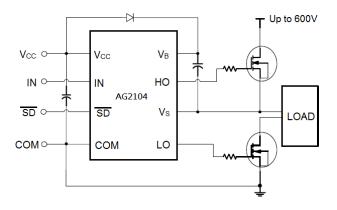
DESCRIPTION

The AG2104 is a high voltage, high speed power MOSFET and IGBT driver based on P_SUB P_EPI process. The floating channel driver can be used to drive two N-channel power MOSFET or IGBT in a half-bridge configuration which operates up to 600V. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. Propagation delays are matched to simplify use in high frequency applications.

AG2104 is available in a SOP8 package.

ORDERING INFORMATION

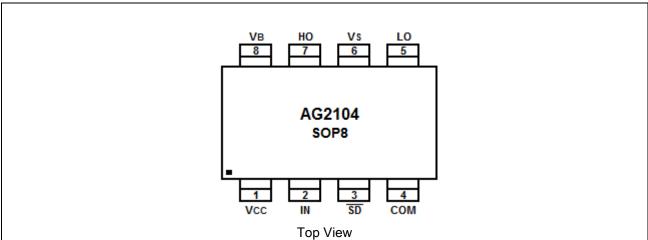
Package Type	Part Number		
SOP8	MO	AG2104M8R	
SPQ: 4,000pcs/Reel	M8	AG2104M8VR	
Nata	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			


FEATURES

- Fully operational to +600V
- 3.3V logic compatible
- dV/dt Immunity ±50V/nsec
- Floating channel designed for bootstrap operation
- Gate drive supply range from 10V to 20V
- UVLO for low side channels
- Output Source / Sink Current Capability 400mA /650mA
- Cross Conduction Protection with 520ns
 Internal Fixed Dead Time
- -10V negative Vs ability
- Matched propagation delay for both channels
- Available in a SOP8 package.

APPLICATION

- Small and medium- power motor driver
- Power MOSFET or IGBT driver


TYPICAL APPLICATION CIRCUIT

REV1.0 - NOV 2017 RELEASED - -1

PIN DESCRIPTION

Pin#	Symbol	Function	
1	Vcc	Low side and main power supply	
2	IN	Logic input for high and low side gate driver output (HO/LO)	
3	SD	Logic input for shutdown	
4	СОМ	Ground	
5	LO	Low side gate drive output	
6	Vs	High side floating supply return	
7	НО	High side gate drive output	
8	V _B	High side floating supply	

REV1.0 - 2 -- NOV 2017 RELEASED -

ABSOLUTE MAXIMUM RATINGS

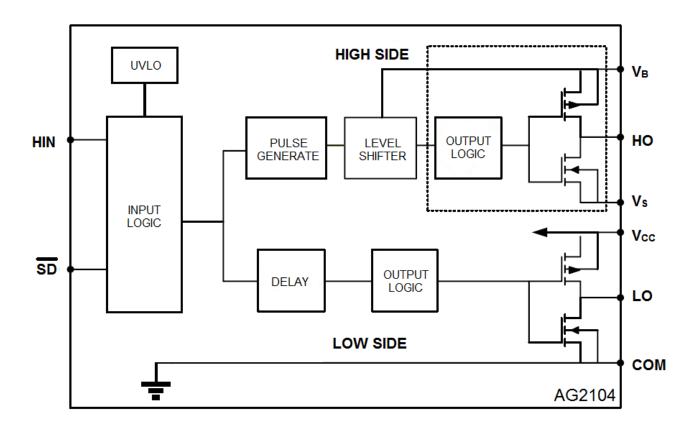
V _B , High Side Floating Supply		-0.3V ~ 622V
V _S , High Side Floating Supply Return		V_B -22V ~ V_B +0.3V
V _{HO} , High Side Gate Drive Output		V_{S} -0.3V ~ V_{B} +0.3V
V _{CC} , Low Side and Main Power Supply		-0.3V ~ 22V
V _{LO} , Low Side Gate Drive Output		-0.3V ~ V _{CC} +0.3V
V _{IN} , Logic Input of IN & SD		-0.3V ~ V _{CC} +0.3V
dVS/dt, Allowable Offset Supply Voltage Transient		50V/ns
ESD, HBM Model		2.5kV
ESD, Machine Model		200V
P _D , Package Power Dissipation @ T _A ≤25°C	SOP8	0.625W
Rth _{JA} , Thermal Resistance Junction to Ambient	SOP8	200°C/W
T _J , Junction Temperature	·	150°C
T _S , Storage Temperature		-55°C~150°C
T _L , Lead Temperature (Soldering, 10 seconds)		300°C
· · · · · · · · · · · · · · · · · · ·		

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

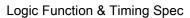
Parameter	Symbol	Min.	Max.	Units
High Side Floating Supply	V _B	Vs +10	Vs +20	V
High Side Floating Supply Return	Vs	-	600	V
High Side Gate Drive Output Voltage	V _{HO}	Vs	V _B	V
Low Side Supply	Vcc	10	20	V
Low Side Gate Drive Output Voltage	V _{LO}	0	Vcc	V
Logic Input Voltage(IN & SD)	V _{IN}	0	Vcc	V
Ambient Temperature	TA	-40	125	°C

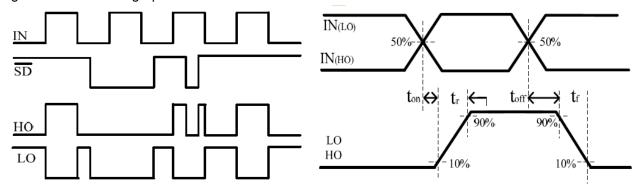
REV1.0 - NOV 2017 RELEASED - - 3 -


ELECTRICAL CHARACTERISTICS

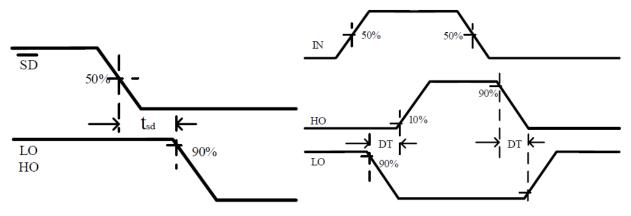
V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000pF and T_A = 25°C, unless otherwise specified.

V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000pF and I_A Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Dynamic Electrical Characteristics						
Turn-On Propagation Delay	t_{on}		-	650	800	
Turn-Off Propagation Delay	t_{off}		-	140	210	
Shutdown Propagation Delay	t_{sd}		-	140	210	
Dead TIME, LS Turn-Off to HS Turn-On	DT		_	520	650	ns
& HS Turn-On to LS Turn-Off	וט		-	520	030	115
Delay Matching	MT		-	-	60	
Turn-On Rise Time	t _r		-	70	140	
Turn-Off Fall Time	t _f		-	50	90	
Static Electrical Characteristics						
Logic "1"(IN) Input Voltage	ViH		3	-	-	
Logic "0" (IN) Input Voltage	VIL		-	-	0.8	
SD Input Positive Going Threshold	V _{SD} , _{TH} +		3	-	_	
SD Input Negative Going Threshold	V _{SD} , _{TH} -		-	-	0.8	V
High Level Output Voltage, V _{BIAS} - V _O	V _{OH}		-	-	0.1	
Low Level Output Voltage, Vo	Vol		-	-	0.1	
Quiescent Vcc Supply Current	Iqcc		-	150	270	
Quiescent V _B Supply Current	I _{QB}		-	30	55	
Leakage Current from V _S (600V) to GND	I_{LK}		-	-	50	μΑ
Logic "1" Input Bias Current	I _{IN} +		-	6	15	
Logic "0" Input Bias Current	I _{IN} -		-	-	1	
V _{CC} Supply UVLO Threshold	V _{CCU} +		-	8.7	-	V
	Vccu-		-	8	-	V
Output High Short Circuit Pulsed Current	l ₀ +		-	400	-	mA
Output Low Short Circuit Pulsed Current	l ₀ -		-	650	-	IIIA

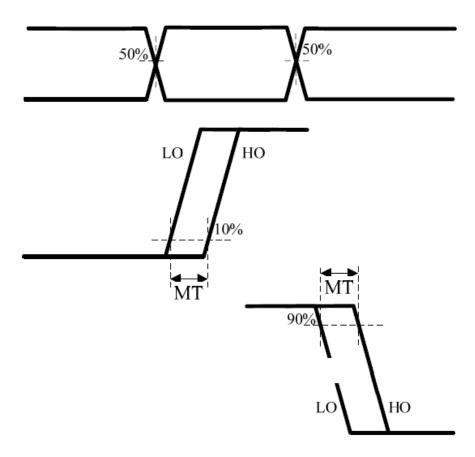

REV1.0 - NOV 2017 RELEASED - -4-


BLOCK DIAGRAM

REV1.0 - NOV 2017 RELEASED - - 5 -


DETAILED INFORMATION

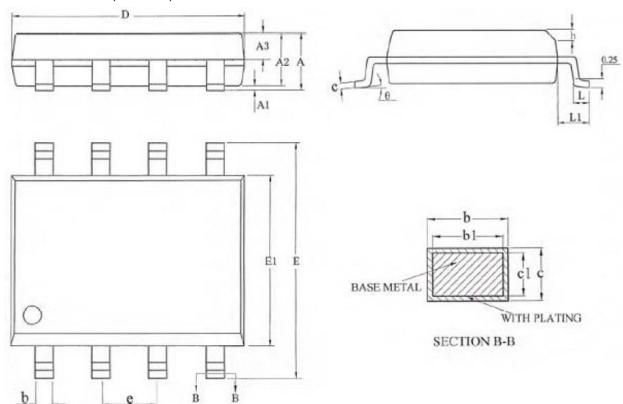
Input / Ouptut Timing Diagram


Switching Time Waveform Definitions

Shutdown Waveform Definitions

Dead time Waveform Definitions

REV1.0 - NOV 2017 RELEASED - - 6 -



Delay Matching Waveform Definitions

REV1.0 - NOV 2017 RELEASED - - 7 -

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min.	Max.		
Α	-	1.75		
A1	0.10	0.225		
A2	1.30	1.50		
A3	0.60	0.70		
b	0.39	0.48		
b1	0.38	0.43		
С	0.21	0.26		
c1	0.19	0.21		
D	4.70	5.10		
Е	5.80	6.20		
E1	3.70	4.10		
е	1.27 BSC			
h	0.25	0.50		
L	0.50	0.80		
L1	1.05 BSC			
θ	0°	8°		

REV1.0 - NOV 2017 RELEASED - - 8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - NOV 2017 RELEASED - - 9 -