AiT Semiconductor Inc.

DESCRIPTION

The AG2136 is a high voltage, high speed power MOSFET and IGBT drivers with a three independent high and low side referenced output channels for 3-phase applications. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600V. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor.

An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an over-current or under-voltage shutdown has occurred. Over-current fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications.

FEATURES

- Fully operational to +600 V
- 3.3 V logic compatible
- dV/dt Immunity ±50 V/nsec
- Floating channel designed for bootstrap operation
- Gate drive supply range from 10 V to 20 V
- UVLO for all channels
- Cross-conduction prevention logic
- Over-current shutdown turns off all six drivers
- Externally programmable delay for automatic fault clear
- Independent 3 half-bridge drivers
- - 7V negative Vs ability
- Matched propagation delay for all channels
- Available in a SOP28 package.

APPLICATION

- Motor Control
- Air Conditioners/ Washing Machines
- General Purpose Inverters
- Micro/Mini Inverter Drives

AG2136 is available in a SOP28 package.

ORDERING INFORMATION

Package Type	Part Number			
SOP28		AG2136M28R		
(wide body)	M28	AC2126M29\/D		
SPQ: 1,000pcs/Reel		AGZIJOWIZOVA		
Noto	V: Halogen free Package			
note	R: Tape & Reel			
AiT provides all RoHS products				

TYPICAL APPLICATION CIRCUIT

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Exceeding these ratings may damage the device.

The absolute maximum ratings are stress ratings only at T_A=25°C, unless otherwise specified.

V _{B1,2,3} , High Side Floating Supply		-0.3V ~ 620V
V _{S1,2,3} , High Side Floating Supply Return		V _B -20V ~ V _B +0.3V
V _{HO1,2,3} , High Side Gate Drive Output		$V_{\rm S}$ -0.3V ~ $V_{\rm B}$ +0.3V
Vcc, Low Side and Main Power Supply		-0.3V ~ 20V
V _{LO1,2,3} , Low Side Gate Drive Output		COM-0.3V ~ V _{CC} +0.3V
V _{IN} , Logic Input of HIN & LIN		V_{SS} -0.3V ~ V_{CC} +0.3V
Vss, Logic Ground		V _{CC} -20V~ V _{CC} +0.3V
V _{RCIN} , RCIN input voltage		Vss ~ Vcc
V _{FLT} , AFULT Output Voltage		V_{SS} -0.3V ~ V_{CC} +0.3V
dVs/dt, Allowable Offset Supply Voltage Transient		50V/ns
ESD, HBM Model	2.5kV	
ESD, Machine Model	200V	
P _D , Package Power Dissipation @ T _A ≤25°C	SOP28	1.6W
Rth _{JA} , Thermal Resistance Junction to Ambient	SOP28	78°C/W
T _J , Junction Temperature		150°C
Ts, Storage Temperature		-55°C~150°C
T∟, Lead Temperature (Soldering, 10 seconds)		300°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min.	Max.	Units
High Side Floating Supply	V _{B1,2,3}	Vs +10	Vs +20	
High Side Floating Supply Return	V _{S1,2,3}	COM-7	600	
High Side Gate Drive Output Voltage	V _{HO1,2,3}	V _{S1,2,3}	V _{B1,2,3}	
Low Side Supply	Vcc	10	20	
Low Side Gate Drive Output Voltage	V _{LO1,2,3}	0	Vcc	V
Logic Input Voltage(HIN & LIN)	VIN	0	Vcc	
Logic Ground	V _{SS}	-5	5	
RCIN Input Voltage	V _{RCIN}	Vss	Vcc	
FAULT Output Voltage	V _{FLT}	V _{SS}	Vcc	
Ambient Temperature	TA	-40	125	°C

DYNAMIC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min	Тур.	Max	Units
Turn-On Propagation Delay	ton	400	530	750	
Turn-Off Propagation Delay	t _{off}	400	530	750	
Turn-On Rising Time	tr	-	125	190	
Turn-Off Fall Time	t _f	-	50	75	ns
Input Filter Time (HIN & LIN)	t _{IN,FLT}	200	350	510	
Enable Low To Output Shutdown Propagation Delay	ten	350	460	650	
Enable Input Filter Time	t _{en,flt}	100	200	-	
UVCC Filter Time	tuvcc	-	7	-	
UVBS Filter Time	tuvвs	-	7	-	
UVCC to FAULT Shutdown Propagation Delay	t _{UVCC,FO}	-	7	-	us
UVCC to LO Shutdown Propagation Delay	tuvcc,lo	-	7	-	
UVBS to HO Shutdown Propagation Delay	t uvвs,но	-	7	-	
FAULT Output Duration Time		1.0	4.05	~	
(RCIN: C = 1nF, R = 2 MΩ)	[FOd	1.3	1.65	2	ms
ITRIP to Output Shutdown Propagation Delay	t ITRIP	420	620	970	
ITRIP Filter Time	tit,FLT	-	400	-	
ITRIP to FAULT Propagation Delay	t _{FO}	400	600	950	
Deadtime	DT	190	275	420	ns
DT Matching	MDT	-	-	60	
Delay Matching Time (t _{ON} , t _{OFF})	МТ	-	-	50	
Pulse Width Distortion ^{NOTE1}	PM	-	-	75	

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000pF and T_A = 25°C, unless otherwise specified.

NOTE1: PM is defined as $\mathsf{PW}_{\mathsf{IN}}\text{-}\mathsf{PW}_{\mathsf{OUT}}$

STATIC ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Min	Тур.	Max	Units	
Vcc Supply Under Voltage Positive Going Threshold	Vuvcc+	8	8.9	9.8		
Vcc Supply Under Voltage Negative Going Threshold	Vuvcc-	7.4	8.2	9.0	V	
Vcc Supply Under Voltage Hysteresis	VUVCCHY	0.3	0.7	-		
High-Side Floating Supply Leakage Current	ILK	-	-	50		
Quiescent V _{BS} Supply Current	IQBS	-	70	120	μA	
Quiescent Vcc Supply Current	lacc	-	1	2	mA	
Operating V _{BS} Supply Current	IPBS	-	400	600	μA	
Operating V _{CC} Supply Current (per 1phase)	IPCC	-	1.3	1.8	mA	
High Level Output Voltage Drop, V _{BIAS} - V _O	Vон	-	0.9	1.4		
Low Level Output Voltage Drop, Vo	Vol	-	0.4	0.6	V	
Output High Short Circuit Pulsed Current	I _{O+}	120	200	-		
Output Low Short Circuit Pulsed Current	lo-	250	350	-	mΑ	
High Level Input Threshold Voltage	VIH	2.5	-	-		
Low Level Input Threshold Voltage	VIL	-	-	0.8	V	
Input Clamp Voltage(HIN , LIN , ITRIP, EN)	Vclamp	5.2	5.6	5.9		
Input Bias Current (HO = High)	I _{HIN+}	-	150	200	μΑ	
Input Bias Current (HO = Low)	I _{HIN-}	-	110	150		
Input Bias Current (LO = High)	I _{LIN+}	-	150	200		
Input Bias Current (LO = Low)	I _{LIN-}	-	110	150		
RCIN Positive Going Threshold	V _{RCIN,TH}	-	8	-	V	
RCIN Hysteresis	VRCIN,HY	-	3	-	V	
RCIN Input Bias Current	I _{RCIN}	-	-	1	μA	
RCIN Low On Resistance	R RCIN,ON	-	50	100	Ω	
ITRIP Positive Going Threshold	VIT,TH+	0.42	0.46	0.5		
ITRIP Negative Going Threshold	VIT,TH-	-	0.4	0.49	V	
ITRIP Hysteresis	V _{IT,HY}	-	0.06	-		
"High" ITRIP Input Bias Current	I _{ITRIP+}	-	5	40		
"Low" ITRIP Input Bias Current	IITRIP-	-	-	1	μA	
Enable Positive Going Threshold	$V_{\text{EN,TH+}}$	-	-	2.5	V	
Enable Negative Going Threshold	Ven,th-	0.8	-	-		
"High" Enable Input Bias Current	I _{EN+}	-	5	40		
"Low" Enable Input Bias Current	I _{EN-}	-	-	1	μΑ	
FAULT Low On Resistance	R _{FO,ON}	-	50	100	Ω	

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

BLOCK DIAGRAM

FUNCTION TIMING DIAGRAM

Fig.2 Input/Output timing waveform

PARAMETER TEMPERATURE TRENDS

Figures 3-24 provide information on the experimental performance of the AG2136 HVIC. The line plotted in each figure is generated from actual lab data. A small number of individual samples were tested at three temperatures (-40°C, 25°C, and 125°C) in order to generate the experimental (Exp.) curve. The line labeled Exp. consist of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood temperature trend. The individual data points on the curve were determined by calculating the averaged experimental value of the parameter (for a given temperature).

Figure 3. ton vs. temperature

Figure 16. IO- vs. temperature

75

75

75

Temperature (*C)

100

125

100

125

100

125

Temperature (°C)

PACKAGE INFORMATION

Dimension in SOP28 (Unit: mm)

Symbol	Min.	Max.		
А	-	2.65		
A1	0.10	0.30		
A2	2.25	2.35		
A3	0.97	1.07		
b	0.39	0.48		
b1	0.38	0.43		
С	0.25	0.31		
c1	0.24	0.26		
D	17.89	18.29		
E	10.10	10.50		
E1	7.30	7.70		
е	1.27 BSC			
L	0.70	1.00		
L1	1.40 BSC			
θ	0°	8°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.