AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

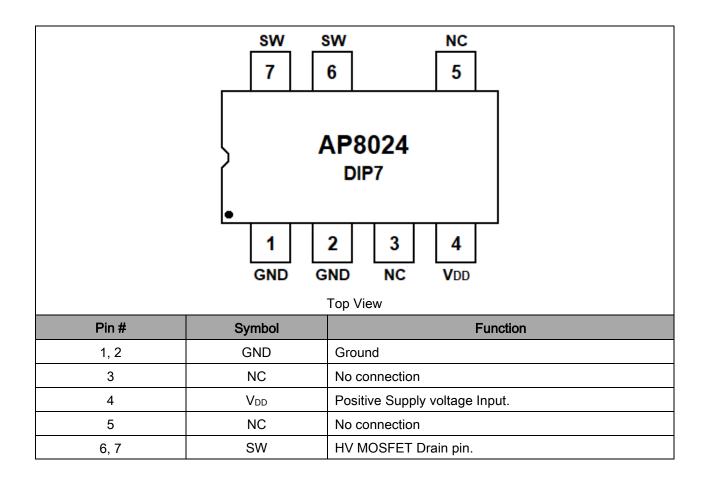
The AP8024 consists of an integrated Pulse • Frequency Modulator (PFM) controller and power MOSFET , specifically designed for small power • non-isolated switching power supply. AP8024 has • internal high voltage start-up circuit and complete intelligent protections including adjustable Over • Current Protection (OCP), Under Voltage Lockout (UVLO) and Over Temperature Protection (OTP). • Excellent EMI performance could be achieved with • Pulse Frequency Modulation.

AP8024 is available in a DIP7 package.

ORDERING INFORMATION

FEATURES

- Internal 650V avalanche-rugged smart power VDMOSFET
- Internal HV Start-up Circuit
- Be optimized with 12V output non-isolated application
- Semi enclosed steady output power 3.6W
 @230VAC, DIP7
- Frequency modulation for low EMI
- Excellent constant voltage regulation and High efficiency
- Excellent Protection Coverage: Adjustable Over Current Protection (OCP)
 Over Temperature Protection (OTP)
 Under Voltage Lockout (UVLO)
- Available in a DIP7 package.


APPLICATION

• non-isolated assistant power supply

Package Type	Part Number		
DIP7	P7	AP8024P7U	
SPQ: 50pcs/Tube	Ρ1	AP8024P7VU	
Note	V: Halogen free Package		
nole	U: Tube		
AiT provides all RoHS products			

PIN DESCRIPTION

TYPICAL POWER

Part Number	Input Voltage	Steady output powerNOTE1	Peak Power NOTE2
AP8024 DIP7	150-265 VAC	3.6W(12V300mA)	4.8W(12V400mA)
	85-265 VAC	3.0W(12V250mA)	4.2W(12V350mA)

NOTE1: Maximum output power in a semi enclosed design measured at 75°C ambient temperature, Duration:2 hours NOTE2: Peak power in a semi enclosed design measured at 75°C ambient temperature, Duration:1 min

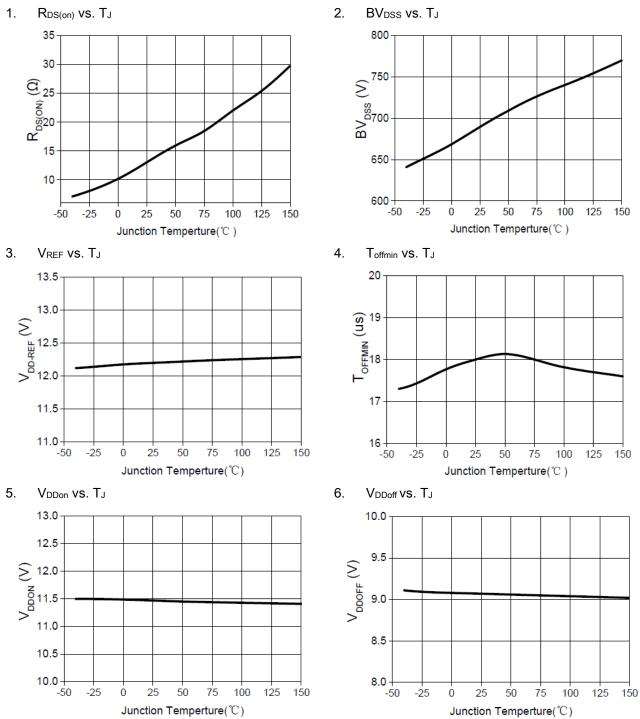
ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}C$, unless otherwise noted	
V _{DD} , Supply Voltage Pin	-0.3V~40V
SW, High-Voltage Pin	-0.3V~650V
Junction Operating Temperature	-40°C~150°C
Storage Temperature Range	-55°C~150°C
Lead Temperature (Soldering, 10secs)	260°C
Package Thermal Resistance (DIP7)	40°C/W
ESD Voltage Protection (HBM, ESDA/JEDEC JDS-001-2014)	±4kV
ESD Voltage Protection ^{NOTE1}	8kV
(Air discharge to pins of AP8024 with ESD Generator)	
The Biggest Drain Pulse Current (T _{pulse} =100us)	3A
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the dev	vice. These are stress ratings only ar

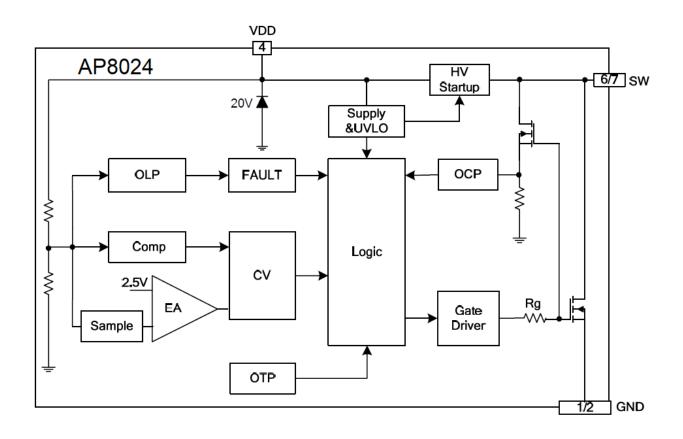
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. NOTE1: Enterprise internal standards, for reference only.

ELECTRICAL CHARACTERISTICS

Power Supply Section


 T_A =25°C, V_{DD} = 11V, unless otherwise specified

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Drain Break-Down Voltage	BV _{DSS}	I _{sw} = 250uA	650	690	-	V
Off-State Drain Current		V _{SW} = 500V	-	-	100	μA
VDMOS on State Resistance	Rds(on)	Isw = 400mA, TJ =25°C	-	13.5	-	Ω
Start up Threshold	V _{SW_START}	V _{DD} = V _{DDon} - 1V	-	30	-	V
Supply Section						
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
V _{DD} Voltage Parameter	1	1		r	T	
Operating Voltage Range	Vdd	After turn-on	10	-	20	V
V _{DD} Start Up Threshold	VDDon		10.5	11.5	12.5	V
V _{DD} Under Voltage Shutdown Threshold	V _{DDoff}		8	9	10	V
V _{DD} Voltage Hysteresis	V _{DDhys}		-	2.5	-	V
V _{DD} Clamp Voltage	VDDclamp		18	20	22	V
VDD Feedback Reference	V _{DD-REF}		-	12.3	-	V
V _{DD} Current Parameter		·				
VDD Charge Current	DDch	V _{DD} = 5V	-	-3	-	mA
Off-State Current	DDoff	V _{DD} = 6V	0.3	0.6	0.9	mA
Operating Supply Current	IDD1	V _{DD} = 13V	-	1.2	-	mA
Operating Supply Current, With	IDD_FAULT	V _{DD} = 11V	-	1	-	mA
Control Section						
Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Current Sense Parameter						
Drain Current Limit	l _{limit}		490	580	670	mA
Leading Edge Blanking Time	t _{LEB}		-	300	_	ns
Feedback Input			•			•
Minimum Turn OFF Time	toffmin		15	18	21	us
Maximum Turn ON Time	tonmax		-	13	-	us
Thermal Shutdown	•					
OTP Threshold	T _{SD}		135	150	-	°C
OTP Protect Hysteresis	THYST		-	30	-	°C
Restart Protection						
Restart Time	t restart	C _{VDD} =4.7µF	-	3	-	s
	1	· · ·				


TYPICAL ELECTRICAL CHARACTERISTICS

25°C, Unless Note

BLOCK DIAGRAM

DETAILED INFORMATION

The AP8024 consists of an integrated Pulse Frequency Modulator (PFM) controller and power MOSFET, specifically designed for small power non-isolated switching power supply. AP8024 has internal high voltage start-up circuit and complete intelligent protections including adjustable Over Current Protection (OCP), Under Voltage Lockout (UVLO) and Over Temperature Protection (OTP). Excellent EMI performance could be achieved with Pulse Frequency Modulation.

Start up

At start up, the internal high-voltage current source supplies 2.5mA current to charges the external V_{DD} capacitor. When V_{DD} rises to V_{DDon} , AP8024 starts switching and the internal high-voltage current source stops charging the capacitor. After start up, the V_{DD} voltage is supplied from output.

CV Operation Mode

In CV operation, AP8024 samples the feedback signal through V_{DD} pin. While the feedback voltage remains below V_{REF} , the IC turns on the integrated MOSFET. When the current of the inductor reaches the peak current limit (Ipeak), the integrated MOSFET is turned off. Figure1 and Figure 2 shows the operating waveform of key nodes in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). Meanwhile, the IC integrates load compensation function to improve load regulation and CV accuracy.

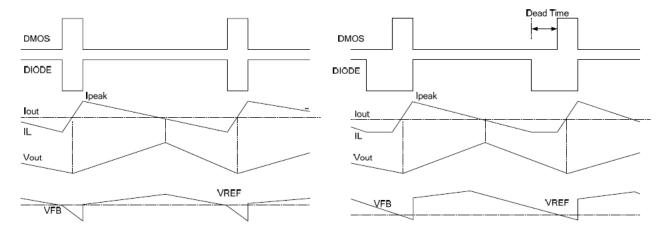


Figure 1 Waveform if CCM mode Figure 2 Waveform of DCM mode In actual applications, V_{DD} sampling voltage is affected by the forward drop of D2 in addition

PFM modulation

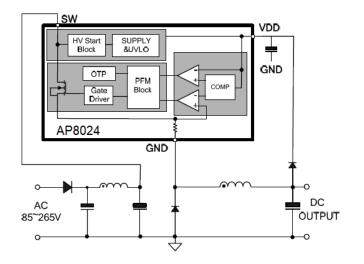
The IC operates in PFM mode, and Ipeak is set to decrease with the decrease of the IC operating frequency (fsw). when the IC switching cycle increase 1us, Ipeak will decrease 13.3mA. As a result of the internal

current sampling and the maximum current limit (I_{limit}), inductance is the only parameter of the frequency modulation when output voltage and output current are fixed.

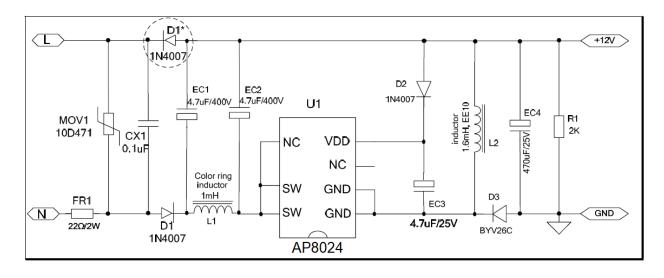
Soft-Start up

In order to regulate peak current in deep CCM mode, AP8024 build in soft-start function, at the first 10ms of start up, the switching frequency decrease to 25% of the maximum frequency, while 10ms to 15ms of start up, the switching frequency decrease to 50% of the maximum frequency. Meanwhile, the leading edge blanking (LEB) is 300ns (Typ.), in order to regulate peak current.

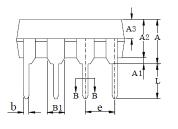
Smart Protection Control

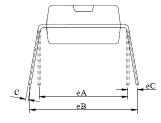

AP8024 has several smart self-protection functions, such as Over Temperature Protection(OTP),V_{DD} Under-Voltage Lockout(UVLO).And all these protections have self-recovery mode.

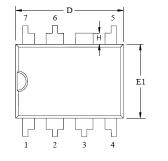
OTP----If the inner junction temperature exceeds 150°C,the IC will shut down switching, until the junction temperature falls to 120°C.

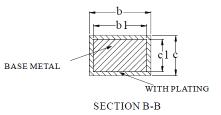

UVLO----If V_{DD} pin Voltage drops below V_{DDoff} , the IC will restart. Otherwise, self-restart time can be changed by V_{DD} capacitor. The larger the capacitor, the longer the self-restart time is.

TYPICAL CIRCUIT


TYPICAL APPLICATION






PACKAGE INFORMATION

Dimension in DIP7 (Unit: mm)

Symbol	Min	Max	
А	3.60	4.00	
A1	0.51	-	
A2	3.00	3.40	
A3	1.55	1.65	
b	0.44	0.53	
b1	0.43	0.48	
B1	1.52(BSC)		
С	0.25	0.31	
c1	0.24	0.26	
D	9.05	9.45	
E1	6.15	6.55	
е	2.54(BSC)		
eA	7.62(BSC)		
eB	7.62	9.30	
eC	0.00	0.84	
L	3.00	-	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.