AiT Semiconductor Inc.

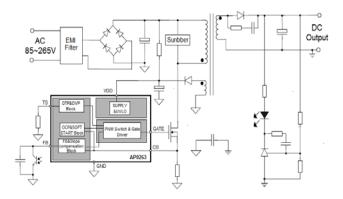
DESCRIPTION

The AP8263 includes all necessary function to build an easy and cost effective solution for low power supplies to meet the international power conservation requirements. AP8263 offers complete protection coverage with automatic self-recovery feature including Cycle-by-Cycle current limiting (OCP), over voltage protection (OVP), over temperature protection (OTP), soft-start and Burst mode operation. Excellent EMI performance is achieved with frequency modulation. The device provides an advanced platform well suited for low standby-power and cost-effective flyback converters.

The AP8263 is available in SOT-26 package

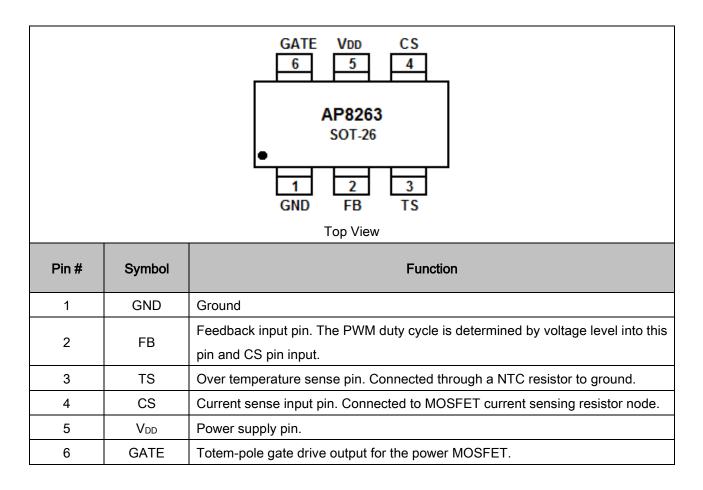
ORDERING INFORMATION

Package Type	Part Number			
SOT 26	Ге	AP8263E6R		
SOT-26	E6	AP8263E6VR		
	V: Halogen free Package			
Note	R: Tape & Reel			
	SPQ: 3,000/Reel			
AiT provides all RoHS products				
Suffix " V " means Halogen free Package				


FEATURES

- Proprietary Frequency Jitter for EMI
- Green Mode Control
- Audio Noise Free
- Internal Slope Compensation
- Owning soft start-up function
- Good Protection Coverage With Auto Self-Recovery
- Available in SOT-26 Package

APPLICATION


- DVB Power Supplies
- Power Adapter
- Battery Charger
- Open-frame SMPS

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Supply Voltage Pin VDD	-0.3V ~ 28V
	-0.3V ~ 28V
FB Input Voltage	-0.3V ~ 7V
SENSE Input Voltage	-0.3V ~ 7V
TS Input Voltage	-0.3V ~ 7V
V _{DD} Clamp Current	10mA
V _{DD} Clamp Voltage	32V
Electrostatic Discharge Human Body Mode	2000V
(HBM, ESDA/JEDEC JDS-001-2014)	
Electrostatic Discharge Machine Mode	200V
Junction Temperature	-40°C∼ 150°C
Storage Temperature Range	-55℃~ 150℃
Lead Temperature (Soldering, 10secs)	260°C

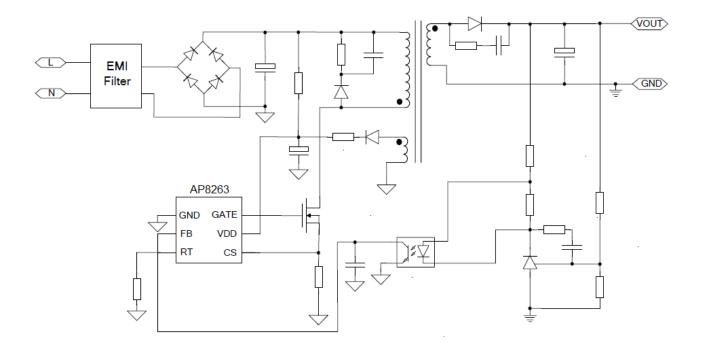
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	MIN	MAX	Units
V _{DD} Voltage	12	25	V
Operating Ambient Temperature	-20	85	°C

ELECTRICAL CHARACTERISTICS

 T_J =25°C, V_{DD} =18V, unless otherwise specified


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OSCILLATOR section						
Normal Oscillation Frequency	Fosc	V _{DD} =18V, FB=5V, CS=0V	58	65	71	kHz
Frequency Temperature Stability	∆f_Temp			1		%
Frequency Voltage Stability	Δf_V_{DD}			1		%
Burst Mode Base Frequency	Fosc_BM			25		kHz
Frequency Modulation range /Base frequency	Δf_OSC			±4		%
Jitter Frequency	f_jitter			32		Hz
FB section			1			
PWM Input Gain	Avcs	ΔV _{FB} /ΔV _{CS}		1.8		V/V
V _{FB} Open Loop Voltage	V _{FB_Open}			4.1		V
FB pin shoTS circuit current	IFB_ShoTS	Short FB pin to GND and measure current		0.4		mA
The Threshold Enter Green Mode	VREF_Green			1.95		V
The Threshold Exit Burst Mode	VREF_Burst_H			1.2		V
The Threshold Enter Burst Mode	V _{REF_Burst_L}			1.1		V
Power Limiting FB Threshold Voltage	Vth_pl			3.6		V
Power limiting Debounce Time	T _{D_PL}		75	90	105	ms
Input Impedance	Zfb_in			16		kΩ
Maximum Duty Cycle	DC_MAX	V _{DD} =18V, FB=3V, CS=0V	70	80	90	%
CS section						
Leading Edge Blanking Time	T_blanking		270		500	ns
Input Impedance	Zsense_in			40		kΩ
Over Current Detection and Control Delay	T皮_oc			120		ns
Over Current Threshold Voltage at zero Duty Cycle	Vтн _ос			0.75		V
Soft-Start up Time	tss			8		ms

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
GATE section			•			
Output Low Level	Vol	V_{DD} = 14V, I ₀ = 5mA			0.5	V
Output High Level	V _{OH}	$V_{DD} = 14V, I_0 = 20mA$	9.5			V
Output Clamp Voltage Level	V_Clamp			15		V
Output Rising Time	Tr	V _{DD} = 12V, C _L = 1nf		160		ns
Output Falling Time	Tf	V _{DD} = 12V, C _L = 1nf		90		ns
SUPPLY section						
		V _{DD} =12V,				
VDD Start up Current	I_V _{DD_Start}	Measure Leakage		5	20	uA
		current into VDD				
Operation Current	$I_V_{DD_Ops}$	V _{FB} =3V		1.8		mA
VDD Under Voltage Lockout	UVLO			9	9.5	V
Enter	(down)		8	9	9.5	V
VDD Under Voltage Lockout	UVLO		44.0 45.5		16.2	V
Exit (Recovery)	(up)		14.3	15.5	16.3	V
V _{DD} Zener Clamp Voltage	$V_{\text{DD}_\text{Clamp}}$	IV _{DD} = 5mA	30			V
Over Voltage Protection Voltage	VDD_OVP	CS=0V, FB=3V	26	28	30	V
Pull-up PMOS active	V_{DD_Pull}			13		V
TS section						
Output Current of TS Pin	ITS		95	100	105	uA
Threshold Voltage for OTP	VTH_OTP		0.96	1	1.04	V
OTP Debounce Time	Td_otp			6		cycle
Float Voltage at TS Pin	V _{TS_Open}			2.65		V
External OVP Threshold Voltage	Vts_ovp			4		V

TYPICAL CIRCUIT

DETAILED INFORMATION

Overview description

The AP8263 includes all necessary function to build an easy and cost effective solution for low power supplies to meet the international power conservation requirements.

Start-up current

Startup current of AP8263 is designed to be very low so that V_{DD} could be charged up above UVLO (up) threshold level and device starts up quickly. Also a large value startup resistor can be used to minimize the power loss.

Green Mode Operation

At light load or no load condition, the switch loss become the major loss of the power supply, to reduce the power wasted in such conditions, based on a special designed voltage controlled oscillator, green mode operation of the power supply can be achieved by using AP8263. The controller will judge the load condition base on the voltage of FB pin. In light load the FB voltage will decrease, when V_{FB} is lower than a set threshold voltage, the operating frequency of the power supply begin to decrease, the minimum frequency is set to above 22kHz to avoid audio noise.

When V_{FB} decrease further, the power supply will enter into burst mode operation to decrease the power consumed at no load condition.

Built-in Slope Compensation

The sensed voltage across the CS resistor is used for PWM control, and pulse by pulse current limit, Built-in slope compensation circuit adds a voltage ramp onto the current sense input voltage. This greatly improves the close loop stability and prevents the sub-harmonic oscillation of peak current mode operation.

Gate Driver

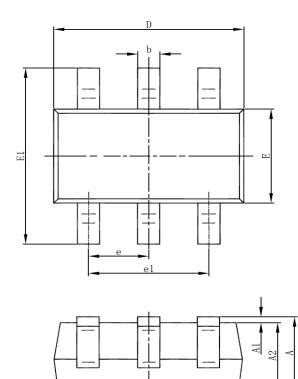
The output stage of AP8263 is a fast totem pole gate driver. Dead time has been added to minimize heat dissipation, increases efficiency and enhances reliability. The output driver is clamped by an internal 15V Zener diode in order to protect power MOSFET transistors against undesirable gate over voltage. A soft driving waveform is implemented to minimize EMI.

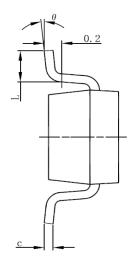
Frequency Jitter

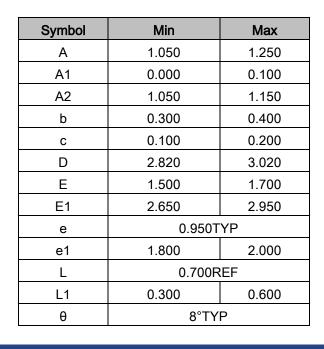
The frequency jitter function is integrated in the controller, the jitter is modulated by a periodic signal, the modulate signal frequency is much smaller than the oscillator frequency, By this way, the EMI noise has a wider spectrum with lower amplitudes.

Over Temperature Protection

A NTC resistor in series with a regular resistor should connect between TS and GND for temperature sensing and protection. NTC resistor value becomes lower when the ambient temperature rises. With the fixed internal current flowing through the resistors, the voltage at TS pin becomes lower at high temperature. The internal OTP circuit is triggered and shutdown the MOSFET when the sensed input voltage is lower than V_{TH_OTP}.


Protection


To increase the reliability of power supply system, many protection functions is integrated in this controller, including Cycle-by-Cycle current limiting (OCP), Over Load Protection (OLP) and over voltage clamp, Under Voltage Lockout on V_{DD} (UVLO). At overload condition when FB input voltage exceeds power limit threshold value for more than T_{D} _PL (power limit debounce time), the controller reacts to shut down the output power MOSFET. Device restarts when V_{DD} voltage drops below UVLO limit. V_{DD} is supplied by transformer auxiliary winding output. It is clamped when V_{DD} is higher than threshold value. The power MOSFET is shut down when V_{DD} drops below UVLO limit and device enters power on start-up sequence thereafter.



PACKAGE INFORMATION

Dimension in SOT-26 (Unit: mm)

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.