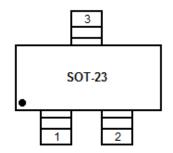
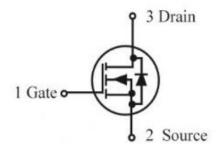


DESCRIPTION

The BSS138L is available in SOT-23 Package


FEATURES


- Low threshold voltage (V_{GS(th)}: 0.5V...1.5V)
 makes it ideal for low voltage applications.
- Available in SOT-23 Package

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	BSS138L		
Note SPQ: 3,000pcs/Reel			
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

REV1.0 - APR 2019 RELEASED - - 1

ABSOLUTE MAXIMUM RATINGS

V _{DSS} , Drain–Source Voltage	50V
V _{GS} , Gate-to-Source Voltage - Continuous	±20V
I _D , Drain Current, Continuous T _A = 25°C	200mA
I _{DM} , Drain Current, Pulsed (tp≤10µs)	800mA

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Limits	Unit
Total Device Dissipation, FR- 5 Board ^{NOTE1}			
T _A = 25 °C	P _D	225	mW
Derate above 25 °C		1.8	mW/°C
Thermal Resistance, Junction-to-AmbientNOTE1	Reja	556	°C/W
Junction and Storage Temperature	TJ , TSTG	-55 to +150	°C
Maximum Lead Temperature for Soldering Purposes,	-	000	5
for 10 seconds	T∟	260	°C

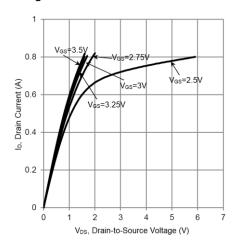
NOTE1: FR-5 = 1.0 x 0.75 x 0.062 in.

REV1.0 - APR 2019 RELEASED - - 2 -

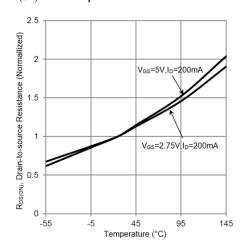
ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$

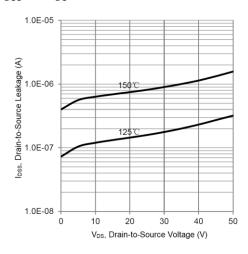
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage	V _{BRDSS}	BRDSS V _{GS} = 0, I _D = 250μAdc		-	_	Vdc
	I _{DSS}	V _{GS} = 0, V _{DS} = 25Vdc	-	-	0.1	۸
Zero Gate Voltage Drain Current		V _{GS} = 0, V _{DS} = 50Vdc	-	-	0.5	μAdc
Gate-Body Leakage Current,	I _{GSSF}	V _{GS} = 20Vdc	_	_	0.1 μAdc	
Forward	10331	VG3 20VU0				μλάς
Gate-Body Leakage Current,	I_{GSSR}	I _{GSSR} V _{GS} = - 20Vdc			-0.1	μAdc
Reverse	IGSSR	VGS = - 20 VdC	- 		-0.1	μAdc
ON CHARACTERISTICSNOTE2						
Gate Threshold Voltage	$V_{\text{GS(th)}}$	$V_{DS} = V_{GS}$, $I_D = 1.0$ mAdc	0.5	-	1.5	Vdc
Static Drain–Source On–State Resistance	R _{DS(ON)}	V_{GS} = 2.75Vdc, I_D < 200		5.6	10	Ohms
		mAdc, $T_A = -40^{\circ}$ C to +85°C	-			
		V_{GS} = 5.0Vdc, I_D = 200mAdc	-	-	3.5	
- IT I I	C	V_{DS} = 25Vdc, I_D = 200mAdc,	100	-	-	mS
Forward Transconductance	G _{FS}	f = 1.0 kHz	100			
DYNAMIC CHARACTERISTICS						
Input Capacitance	Ciss	\\ - 25\\da \\ - 0	-	40	50	
Output Capacitance	Coss	$V_{DS} = 25 \text{Vdc}, V_{GS} = 0,$	-	12	25	pF
Reverse Transfer Capacitance	Crss	f = 1.0 MHz	-	3.5	5.0	
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	$t_{\sf d(on)}$)/ = 20)/d= 1 =200	-	-	20	
Turn-Off Delay Time	t _{d(off)}	$V_{DD} = 30Vdc$, $I_D = 200mAdc$	-	-	20	ns

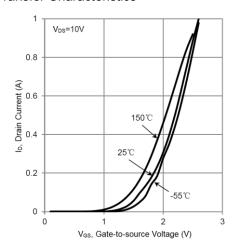

NOTE2 Pulse Test: Pulse Width ≤300 µs, Duty Cycle ≤2.0%.

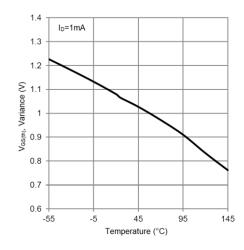
REV1.0 - APR 2019 RELEASED - - 3 -

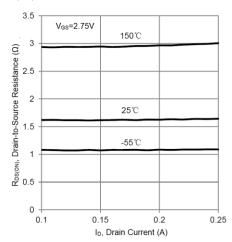


TYPICAL CHARACTERISTICS

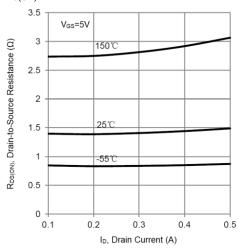

1. On-Region Characteristics

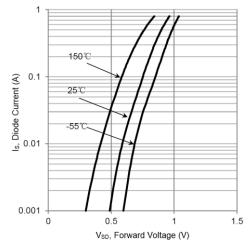

3. R_{DS(ON)} vs. Temperature

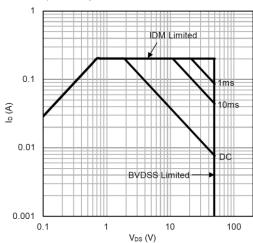

5. I_{DSS} vs. V_{DS}

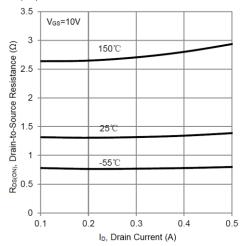

2. Transfer Characteristics

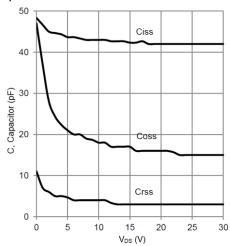
4. Threshold Voltage vs. Temperature


6. $R_{DS(ON)}$ vs. I_D

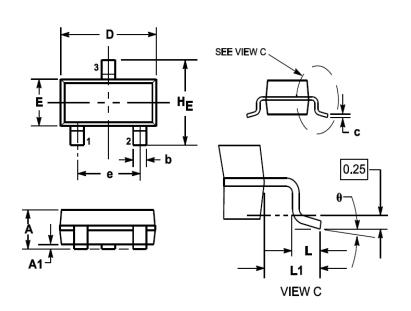

REV1.0 - APR 2019 RELEASED - - 4 -

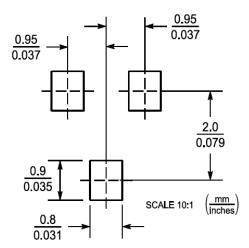

7. RDS(ON) vs. ID


9. Body Diode Forward Voltage


11. Safe Operating Area

8. R_{DS(ON)} vs. I_D


10. Capacitor vs. V_{DS}


REV1.0 - APR 2019 RELEASED -

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

SOLDERING FOOTPRINT

DIM	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	0.89	1.11	0.035	0.044	
A1	0.01	0.10	0.001	0.004	
b	0.37	0.50	0.015	0.020	
С	0.09	0.18	0.003	0.007	
D	2.80	3.04	0.110	0.120	
Е	1.20	1.40	0.047	0.055	
е	1.78	2.04	0.070	0.081	
L	0.10	0.30	0.004	0.012	
L1	0.35	0.69	0.014	0.029	
HE	2.10	2.64	0.083	0.104	
θ	0°	10°	0°	10°	

REV1.0 - APR 2019 RELEASED - - 6 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - APR 2019 RELEASED - - 7 -