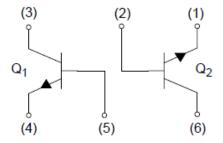


DESCRIPTION

The MBT2222AD is available in SC-88 package.


FEATURES

- RoHS compliance
- Available in SC-88 package

ORDERING INFORMATION

Package Type	Part Number		
SC-88	MBT2222AD-1		
Nata	Package Q'ty/Reel		
Note	1=3,000pcs/Reel		
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C

V _{CEO} , Collector-Emitter Voltage	40Vdc
V _{CBO} , Collector-Base Voltage	75Vdc
V _{EBO} , Emitter-Base Voltage	6.0Vdc
Ic, Collector Current-Continuous	600mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Package Dissipation	D-	150	mW
T _A = 25°C	P_D	150	IIIVV
Thermal Resistance, Junction to Ambient	R _{θJA}	833	°C/W
Junction and Storage Temperature	TJ, Tstg	-55 to +150	°C

REV1.0 - APR 2011 RELEASED - - 2

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit	
OFFCHARACTERISTICS						
Collector-Emitter		L = 40 m A do L = 0	40			
Breakdown Voltage	V _{(BR)CEO}	O Ic = 10mAdc, I _B = 0		-	Vdc	
Collector-Base	M	$I_{C} = 10 \mu Adc, I_{E} = 0$	75	-	Vdc	
Breakdown Voltage	V _{(BR)CBO}	IC - ΤΟμΑάς, IE - 0				
Emitter-Base	V/2=>==	L = 40Ada L = 0	6.0	-	Vdc	
Breakdown Voltage	V _{(BR)EBO}	$I_E = 10\mu Adc$, $I_C = 0$				
Collector Cutoff Current	I _{CEX}	$V_{CE} = 60 \text{Vdc}, V_{EB(off)} = 3.0 \text{Vdc}$	-	10	nAdc	
Collector Cutoff Current	Ісво	V _{CB} = 60Vdc, I _E = 0	- 0.01		u A de	
Collector Cuton Current		V _{CB} = 60Vdc, I _E = 0, T _A = 125°C	-	10	μAdc	
Emitter Cutoff Current	I _{EBO}	$V_{EB} = 3.0 Vdc, I_C = 0$	-	100	nAdc	
Base Cutoff Current	I_{BL}	$V_{CE} = 60 \text{Vdc}, V_{EB(off)} = 3.0 \text{Vdc}$	-	20	nAdc	
ON CHARACTERISTICS						
	hfE	$I_C = 0.1 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	35	-	-	
		$I_C = 1.0 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	50	-	-	
		I _C = 10mAdc, V _{CE} = 10Vdc	75	-	-	
DC Current Gain		I_C = 10mAdc, V_{CE} = 10Vdc, T_A = -55°C	35	-	-	
		I _C = 150mAdc, V _{CE} = 10Vdc ^{NOTE1}	100	300	_	
		I_C = 150mAdc, V_{CE} = 1.0Vdc NOTE1	50	-	-	
		I _C = 500mAdc, V _{CE} = 10Vdc NOTE1	40	-	-	
Collector–Emitter	V	I_C = 150mAdc, I_B = 15mAdc	-	0.3	\	
Saturation Voltage NOTE1	V _{CE(sat)}	I_C = 500mAdc, I_B = 50mAdc	-	1.0	1.0 Vdc	
Base-Emitter	\/·	I _C = 150mAdc, I _B = 15mAdc	-	1.2	\/da	
Saturation Voltage NOTE1	$V_{BE(sat)}$	I _C = 500mAdc, I _B = 50mAdc	0.6	2.0	Vdc	

NOTE1: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle 3 2.0%.

REV1.0 - APR 2011 RELEASED - - 3 -

$T_A = 25$ °C unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit	
SMALL-SIGNAL CHARA	SMALL-SIGNAL CHARACTERISTICS					
Current-Gain-Bandwid th Product NOTE2	f⊤	I _C = 20mAdc, V _{CE} = 20Vdc, f = 100 MHz		-	MHz	
Output Capacitance	Cobo	V _{CB} = 10Vdc, I _E = 0, f = 1.0 MHz	1	8.0	pF	
Input Capacitance	C _{ibo}	$V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz$	1	25	pF	
Input Impodance	1.	I_C = 1.0mAdc, V_{CE} = 10Vdc, f = 1.0kHz	2.0	8.0	kΩ	
Input Impedance	h _{ie}	I _C = 10mAdc, V _{CE} = 10Vdc, f = 1.0 kHz	0.25	1.25		
Voltage Feedback	h	I_C = 1.0mAdc, V_{CE} = 10Vdc, f = 1.0 kHz	1	8.0	v40-4	
Ratio	h _{re}	I_C = 10mAdc, V_{CE} = 10Vdc, f = 1.0 kHz	1	4.0	x10 ⁻⁴	
Small-Signal Current	L	I_C = 1.0mAdc, V_{CE} = 10Vdc, f = 1.0 kHz	50	300		
Gain	h _{fe}	I _C = 10mAdc, V _{CE} = 10Vdc, f = 1.0 kHz	75	375	1 -	
	h _{oe}	Ic = 1.0mAdc, V _{CE} = 10Vdc, f = 1.0 kHz	5.0	35		
Output Admittance		I _C = 10mAdc, V _{CE} = 10Vdc, f = 1.0 kHz	25	200	µmhos	
Collector Base Time Constant	rb, Cc	I _E = 20mAdc, V _{CB} = 20Vdc, f = 31.8 MHz	-	150	ps	
N . E.	NF	I _C = 100μAdc, V _{CE} = 10Vdc,		4.0	I.D.	
Noise Figure		Rs = 1.0 kW, f = 1.0 kHz		4.0	dB	
SWITCHING CHARACTERISTICS						
Delay Time	t d	$V_{CC} = 30Vdc$, $V_{BE(off)} = -0.5Vdc$,	-	10		
Rise Time	t r	t _r I _C = 150mAdc, I _{B1} = 15mAdc -		25	ns	
Storage Time	ts	V _{CC} = 30Vdc, I _C = 150mAdc,		225	 -	
Fall Time t _f I		I _{B1} = I _{B2} = 15mAdc	-	60	ns	

NOTE2: $f_{\text{\tiny T}}$ is defined as the frequency at which |hfe| extrapolates to unity.

REV1.0 - APR 2011 RELEASED - - 4 -

TYPICAL CHARACTERISTICS

Figure 1. DC Current Gain

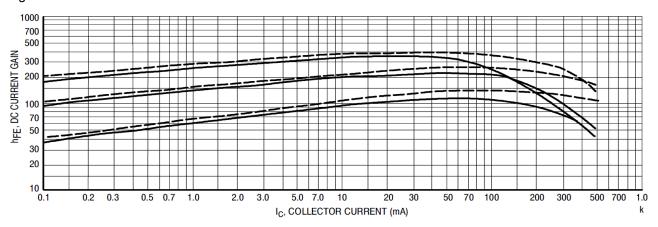


Figure 2. Collector Saturation Region

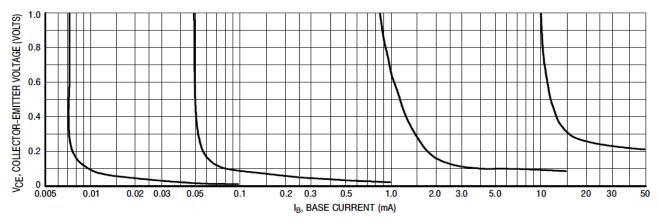


Figure 3. Turn-On Time

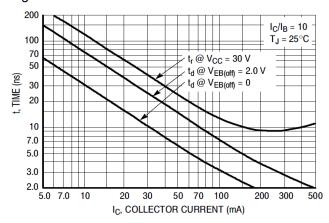
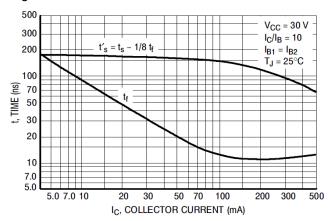



Figure 4. Turn-Off Time

REV1.0 - APR 2011 RELEASED - - 5 -

Figure 5. Frequency Effects

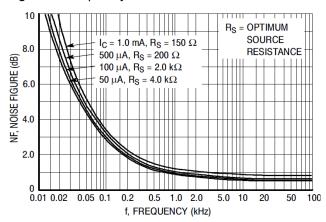


Figure 7. Capacitances

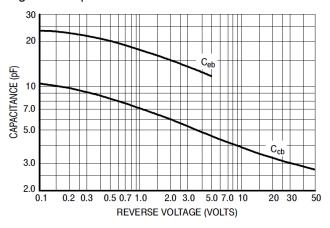


Figure 9. "On" Voltages

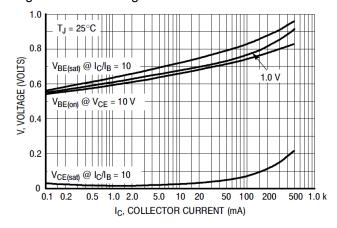


Figure 6. Source Resistance Effects

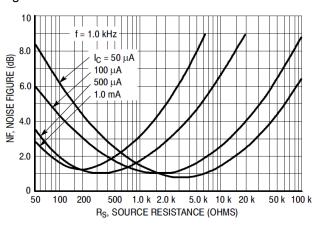


Figure 8. Current-Gain Bandwidth Product

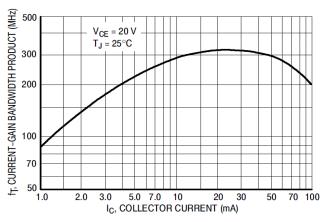
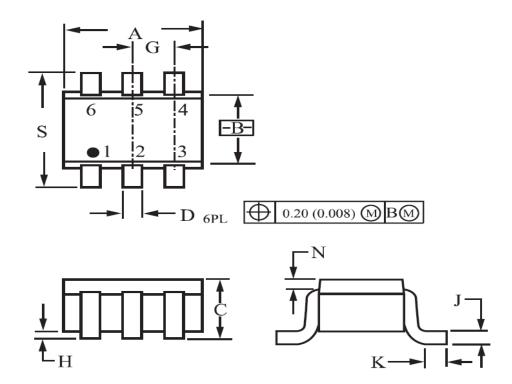



Figure 10. Temperature Coefficients



REV1.0 - APR 2011 RELEASED - - 6 -

PACKAGE INFORMATION

Dimension in SC-88 Package (Unit: mm)

DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	1.80	2.20	0.071	0.087	
В	1.15	1.35	0.045	0.053	
С	0.80	1.10	0.031	0.043	
D	0.10	0.30	0.004	0.012	
G	0.65 BSC		0.026 BSC		
Н	-	0.10	-	0.004	
J	0.10	0.25	0.004	0.010	
K	0.10	0.30	0.004	0.012	
N	0.20 REF		0.00	8 REF	
S	2.00	2.20	0.079	0.087	

REV1.0 - APR 2011 RELEASED - - 7 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - APR 2011 RELEASED - -8 -