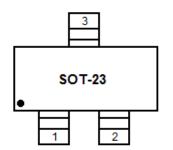
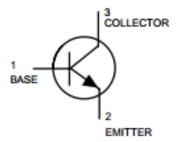
DESCRIPTION

FEATURES


The MBT2222AL is available in SOT-23 Package.


Available in SOT-23 Package

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	MBT2222AL		
Note SPQ: 3,000pcs/Reel			
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

$T_A = 25^{\circ}C$

-77 = -7	
V _{CEO} , Collector-Emitter Voltage	40Vdc
V _{CBO} , Collector-Base Voltage	75Vdc
V _{EBO} , Emitter-Base Voltage	6.0Vdc
Ic, Collector Current-Continuous	600mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Package Dissipation FR-5 BoardNOTE1			
T _A = 25°C	P _D	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	556	°C/W	
Total Device Dissipation			
Alumina Substrate, T _A = 25°C ^{NOTE2}	P _D	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{θJA}	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

NOTE1: FR-5 = 1.0 x 0.75 x 0.062 in.

NOTE2: Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

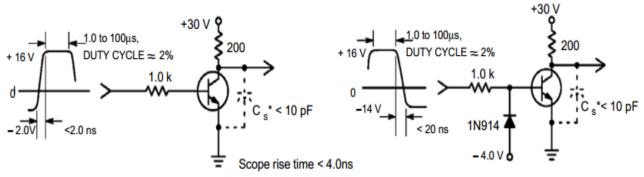
ELECTRICAL CHARACTERISTICS

T_A = 25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit	
OFFCHARACTERISTICS						
Collector–Emitter	\/	L = 10mAdo L = 0	40	-	Vdc	
Breakdown Voltage ^{NOTE3}	V (BR)CEO	$I_C = 10$ mAdc, $I_B = 0$				
Collector-Emitter	V _{(BR)CBO}	I_{CBO} $I_{C} = 10 \mu Adc$, $I_{E} = 0$	75		\/do	
Breakdown Voltage	V (BR)CBO	ις – ΤομΑας, ι <u>ε</u> – υ	75	-	Vdc	
Emitter-Base Breakdown	V _{(BR)EBO}	$I_E = 10\mu Adc, I_C = 0$	6.0	-	Vdc	
Voltage	A (RK)ERO	IE - ΤΟμΑάς, IC - Ο	0.0			
Collector Cutoff Current	Icex	$V_{CB} = 60 \text{Vdc}, I_{EB(off)} = 3.0 \text{Vdc}$	-	10	nAdc	
Collector Cutoff Current	Ісво	$V_{CB} = 60 Vdc$, $I_E = 0$	-	0.01		
Collector Cutoff Current	ICBO	V _{CB} = 60Vdc, I _E = 0, T _A = 125°C	-	10	μAdc	
Emitter Cutoff Current	I _{EBO}	V _{EB} = 3.0Vdc, I _C = 0	-	100	nAdc	
Base Current	I _{BL}	V _{CE} = 60Vdc, V _{EB(off)} = 3.0Vdc	-	20	nAdc	
ON CHARACTERISTICS						
	hfE	I_C = 0.1mAdc, V_{CE} = 10Vdc	35	-		
DC Current Gain		I_C = 1.0mAdc, V_{CE} = 10Vdc	50	-	- - - 300 -	
		I _C = 10mAdc, V _{CE} = 10Vdc	75	-		
		I _C = 10mAdc, V _{CE} = 10Vdc, T _A = -55°C	35	-		
		I _C = 150mAdc, V _{CE} = 10Vdc ^{NOTE3}	100	300		
		$I_C = 150 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}^{\text{NOTE3}}$	50	-		
		Ic = 500mAdc, V _{CE} = 10Vdc ^{NOTE3}	40	-		
Collector-Emitter		I _C = 150mAdc, I _B = 15mAdc	-	0.3	\	
Saturation Voltage ^{NOTE3}	V _{CE(sat)}	I _C = 500mAdc, I _B = 50mAdc	-	1.0	Vdc	
Base-Emitter Saturation	.,,	I _C = 150mAdc, I _B = 15mAdc	0.6	1.2	\/.l.	
Voltage	V _{BE(sat)}	I_C = 500mAdc, I_B = 50mAdc	-	2.0	Vdc	

Parameter	Symbol	Conditions	Min	Max	Unit	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain-Bandwidth Product NOTE4	f⊤	I_C = 20mAdc, V_{CE} = 20Vdc, f = 100MHz	300	-	MHz	
Output Capacitance	Cobo	V _{CB} = 10Vdc, I _E = 0, f = 1.0MHz	1	8.0	pF	
Input Capacitance	C_{ibo}	$V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz$	ı	25	pF	
lancet lance adams a		V _{CE} = 10Vdc, I _C = 1.0mAdc,f = 1.0kHz	2.0 8.0		1.0	
Input Impedance	h _{ie}	V_{CE} = 10Vdc, I_C = 10mAdc, f = 1.0kHz	0.25	1.25	kΩ	
Voltage Foodbook Datie	L	V _{CE} = 10Vdc, I _C = 1.0mAdc, f =1.0kHz	-	0.0		
Voltage Feedback Ratio	h _{re}	V _{CE} = 10Vdc, I _C = 10mAdc, f = 1.0kHz	-	4.0	x 10 ⁻⁴	
Small-Signal Current Gain	h _{fe}	V_{CE} = 10Vdc, I_C = 1.0mAdc, f = 1.0kHz	50	50 300		
		V _{CE} = 10Vdc, I _C = 10mAdc, f = 1.0kHz	75	375] -	
0	h _{oe}	V _{CE} = 10Vdc, I _C = 1.0mAdc,f = 1.0kHz	5.0 35			
Output Admittance		V _{CE} = 10Vdc, I _C = 10mAdc, f = 1.0kHz	25	200	µmhos	
Current Base Time	ula C	2	-	150	ps	
Comstant	rb, Cc	V _{CB} = 20Vdc, I _E =20mAdc, f=31.8 MHz				
Noise Figure	NF	V _{CE} = 10Vdc, I _C = 100μAdc,		4.0	dB	
Noise Figure		R _S =1.0kΩ, f =1.0kHz	1	4.0	uБ	
SWITCHING CHARACTERISTICS						
Delay Time	t d	$V_{CC} = 30Vdc, V_{EB(off)} = -0.5Vdc,$ -		10		
Rise Time	t _r	t_r $I_C = 150 \text{mAdc}, I_{B1} = 15 \text{mAdc}$ -		25	ns	
Storage Time	ts	$V_{CC} = 30Vdc, I_C = 150mAdc,$		225		
Fall Time	tf	$I_{B1} = I_{B2} = 15$ mAdc		60	ns	

NOTE3: Pulse Test: Pulse Width <300 μs, Duty Cycle <2.0%.


NOTE4: f_T is defined as the frequency at which $\mid h_{FE} \mid$ extrapolates to unity.

TYPICAL CHARACTERISTICS

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 1. Turn-On Time

Figure 2. Turn-Off Time

*Total shunt capacitance of test jig, connectors, and oscilloscope.

Figure 3. DC Current Gain

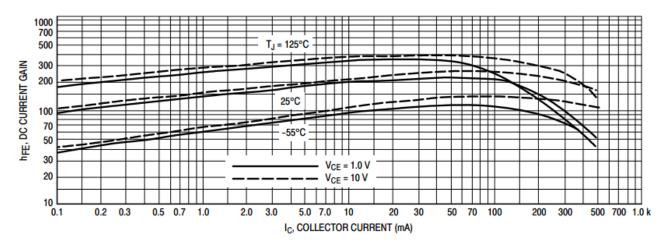


Figure 4. Collector Saturation Region

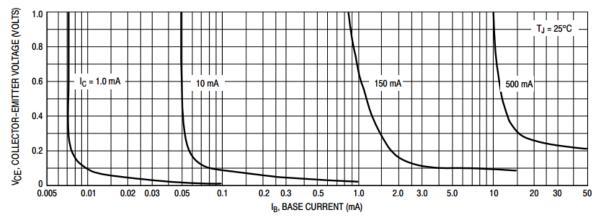


Figure 5. Turn-On Time

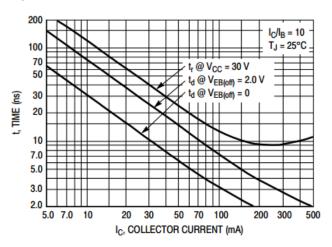


Figure 7. Frequency Effects

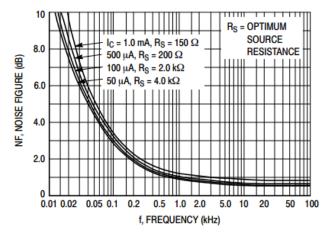


Figure 9. Capacitance

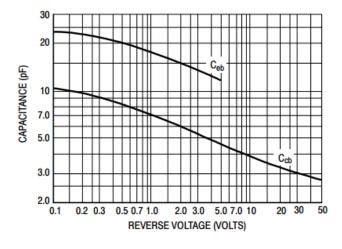


Figure 6. Turn - Off Time

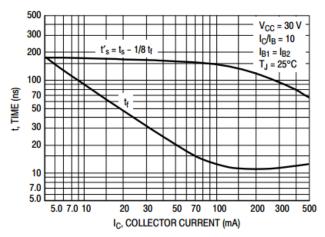


Figure 8. Source Resistance Effects

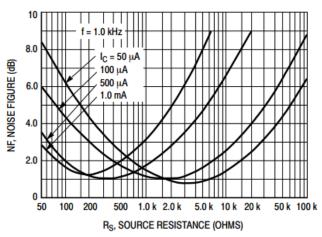


Figure 10. Current- Gain Bandwidth Product

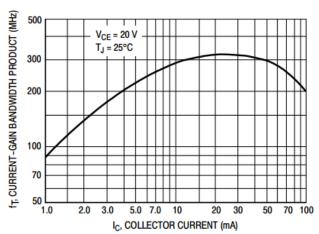


Figure 11. Collector Emitter Saturation Voltage vs. Collector Current

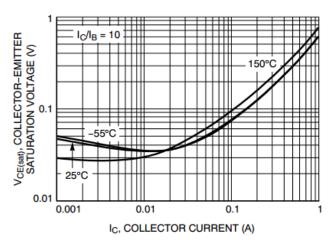


Figure 13. Base Emitter Voltage vs.

Collector Current

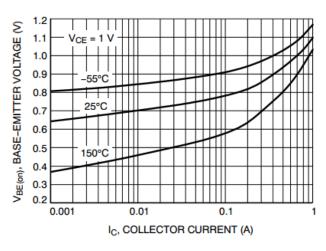


Figure 15.Safe Operating Area

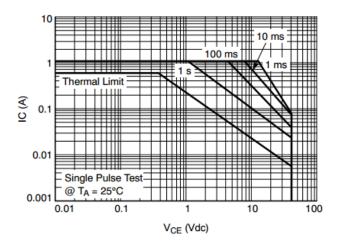
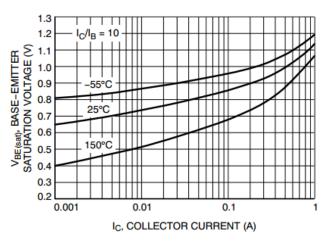
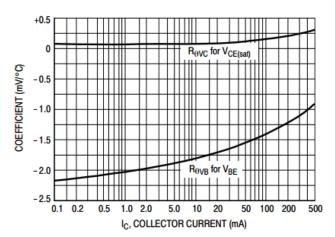
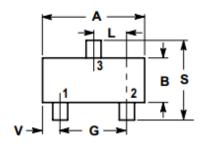
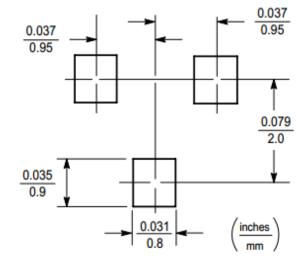
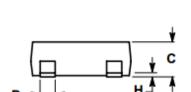
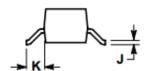


Figure 12. Base Emitter Saturation Voltage vs. Collector Current


Figure 14. Temperature Coefficients




PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.1102	0.1197	2.80	3.04	
В	0.0472	0.0551	1.20	1.40	
С	0.0350	0.0440	0.89	1.11	
D	0.0150	0.0200	0.37	0.50	
G	0.0701	0.0807	1.78	2.04	
Н	0.0005	0.0040	0.013	0.100	
J	0.0034	0.0070	0.085	0.177	
K	0.0140	0.0285	0.35	0.69	
L	0.0350	0.0401	0.89	1.02	
S	0.0830	0.1039	2.10	2.64	
V	0.0177	0.0236	0.45	0.60	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.