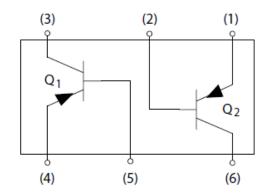
DESCRIPTION

The MBT2907AD is available in SC-88 package.


FEATURES

- RoHS compliance
- Available in SC-88 package

ORDERING INFORMATION

Package Type	Part Number		
SC-88	MBT2907AD		
Note	SPQ: 3,000pcs/Reel		
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

PIN

- 1. EMITTER 2
- 2. BASE 2
- 3. COLLECTOR 1
- 4.EMITTER 1
- 5. BASE 1
- 6. COLLECTOR 2

REV1.0 - JUL 2014 RELEASED - -1

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	-60Vdc
V _{CBO} , Collector-Base Voltage	-60Vdc
V _{EBO} , Emitter-Base Voltage	-5.0Vdc
I _C , Collector Current-Continuous	-600mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Device Dissipation FR-5 Board NOTE1			
T _A = 25°C	P _D	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	ReJA	556	°C/W
Total Device Dissipation Alumina Substrate NOTE2			
T _A = 25°C	P _D	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	R _{0JA}	417	°C/W
Junction and Storage Temperature	T _J , T _{STG}	-55 to +150	°C

NOTE1: FR-5 = 1.0 x 0.75 x 0.062 in.

NOTE2: Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

REV1.0 - JUL 2014 RELEASED - - 2

ELECTRICAL CHARACTERISTICS

T_A=25°C, unless otherwise noted

Parameter	Symbol	Conditions	Min.	Max.	Unit	
OFFCHARACTERISTICS						
Collector–Emitter Breakdown Voltage NOTE3	V _{(BR)CEO}	$I_{C} = -10 \text{mAdc}, I_{B} = 0$	-60	-	Vdc	
Collector-Emitter Breakdown Voltage	V _(BR) CBO	I _C = -10μAdc, I _E = 0	-60	-	Vdc	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E = -10μAdc, I _C = 0	-5.0	-	Vdc	
Collector Cutoff Current	I _{CEX}	$V_{CB} = -30 \text{Vdc}$, $I_{BE(OFF)} = -0.5 \text{Vdc}$	-	-50	nAdc	
		$V_{CB} = -50 Vdc, I_E = 0$	-	-0.010		
Collector Cutoff Current	Ісво	V _{CB} = -50Vdc, I _E = 0, T _A = 125°C	10 μA		μAdc	
Base Current	lΒ	$V_{CE} = -30 \text{Vdc}, V_{EB(off)} = -0.5 \text{Vdc}$	-	-50	nAdc	
ON CHARACTERISTICS						
		I_C = -0.1mAdc, V_{CE} = -10Vdc	75	-		
		I_C = -1.0mAdc, V_{CE} = -10Vdc	100	-		
DC Current Gain	h _{FE}	I_C = -10mAdc, V_{CE} = -10Vdc	100	-		
		$I_C = -150 \text{mAdc}$, $V_{CE} = -10 \text{Vdc}$ NOTE3	100	300		
		I_C = -500mAdc, V_{CE} = -10Vdc NOTE3	50	-		
Collector-Emitter Saturation	Vas	I_C = -150mAdc, I_B = -15mAdc	-	-0.4	//da	
Voltage NOTE3	V _{CE(sat)}	I_C = -500mAdc, I_B = -50mAdc	_	-1.6	Vdc	
Base-Emitter Saturation	V	I_C = -150mAdc, I_B = -15mAdc	-	-1.3	//da	
Voltage NOTE3		I_C = -500mAdc, I_B = -50mAdc	-	-2.6	-2.6 Vdc	
SMALL-SIGNAL CHARACTE	RISTICS					
Current-Gain-Bandwidth Product NOTE3,4	f⊤	I_C = -50mAdc, V_{CE} = -20Vdc, f = 100MHz	200	-	MHz	
Output Capacitance	C_{obo}	$V_{CB} = -10Vdc, I_E = 0, f = 1.0MHz$	-	8.0	pF	
Input Capacitance	Cibo	V _{EB} = -2.0Vdc, I _C = 0, f = 1.0MHz	-	30	pF	
SWITCHING CHARACTERIS	TICS					
Turn-On Time	ton	$V_{CC} = -30 \text{Vdc}, I_{C} = -150 \text{mAdc},$	-	45		
Delay Time	t_{d}	$I_{B1} = -15$ mAdc	_	10	ns	
Rise Time	tr	IDI — - IDIIIAUC	_	40		
Fall Time	t _f	V 0.0V/1 1 450 A 1	-	60		
Storage Time	ts	$V_{CC} = -6.0 \text{Vdc}, I_C = -150 \text{mAdc},$	-	225	ns	
Turn-Off Time	t _{off}	$I_{B1} = I_{B2} = 15$ mAdc	-	280		

NOTE3: Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.

NOTE4: f_T is defined as the frequency at which |hfe| extrapolates to unity.

REV1.0 - JUL 2014 RELEASED - - 3 -

TYPICAL CHARACTERISTICS

Figure 1. Delay and Rise Time Test Circuit

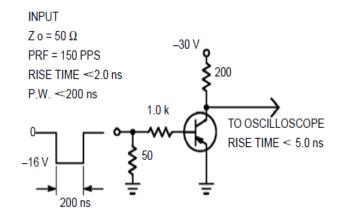


Figure 2. Storage and Fall Time Test Circuit

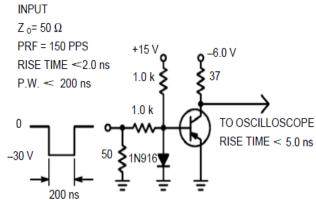


Figure 3. DC Current Gain

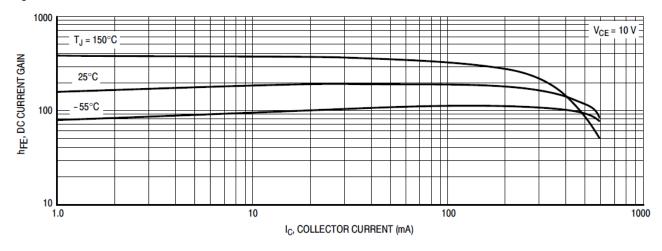
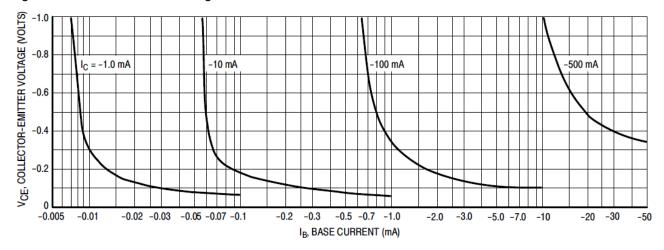
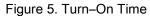




Figure 4. Collector Saturation Region

REV1.0 - JUL 2014 RELEASED - - 4 -

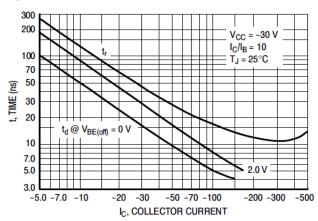
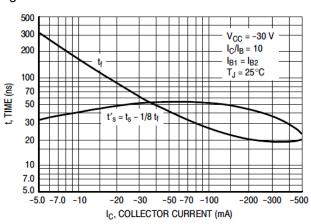



Figure 6. Turn-Off Time

TYPICAL SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE (Vce = 10Vdc, TA = 25°C)

Figure 7. Frequency Effects

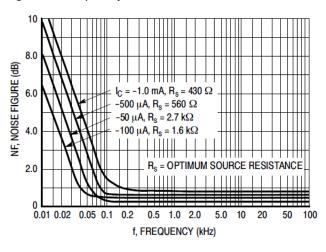


Figure 8. Source Resistance Effects

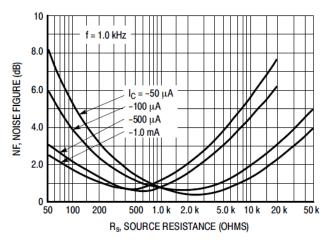


Figure 9. Capacitances

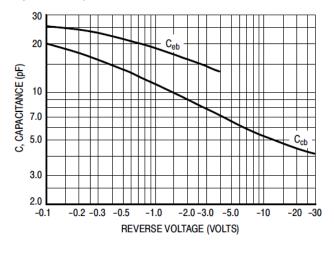
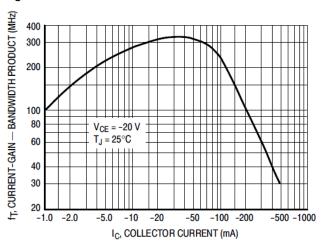



Figure 10. Current-Gain-Bandwidth Product

REV1.0 - JUL 2014 RELEASED - - 5 -

Figure 11. Collector Emitter Saturation Voltage vs.

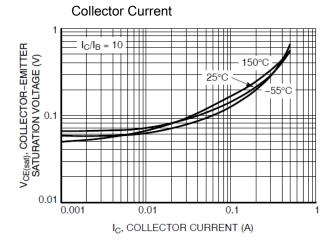


Figure 13. Base Emitter Voltage vs. Collector Current

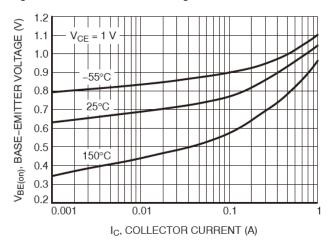


Figure 15. Safe Operating Area

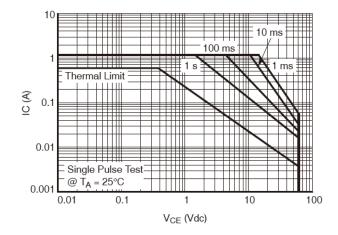
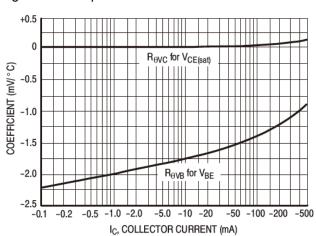
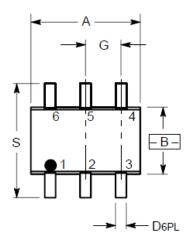
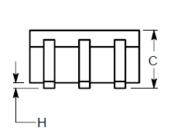
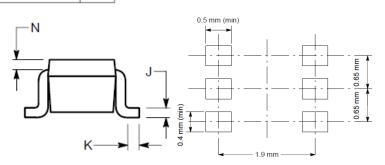


Figure 12. Base Emitter Saturation Voltage vs.


Figure 14. Temperature Coefficients


REV1.0 - JUL 2014 RELEASED - - 6 -


PACKAGE INFORMATION

Dimension in SC-88 Package (Unit: mm)

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н	-	0.004	-	0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008 REF		0.20 REF		
S	0.079	0.087	2.00	2.20	

REV1.0 - JUL 2014 RELEASED - - 7

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUL 2014 RELEASED - - 8 -