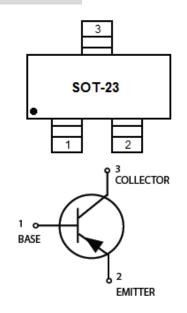


DESCRIPTION

The MBT2907AL is available in SOT-23 Package.


FEATURES

PIN DESCRIPTION

• Available in SOT-23 Package

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	MBT2907AL		
Note SPQ: 3,000pcs / Reel			
AiT provides all RoHS Compliant Products			

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	-40Vdc ~ -60Vdc
V _{CBO} , Collector-Base Voltage	-60Vdc
V _{EBO} , Emitter-Base Voltage	-5.0Vdc
Ic, Collector Current-Continuous	-600mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

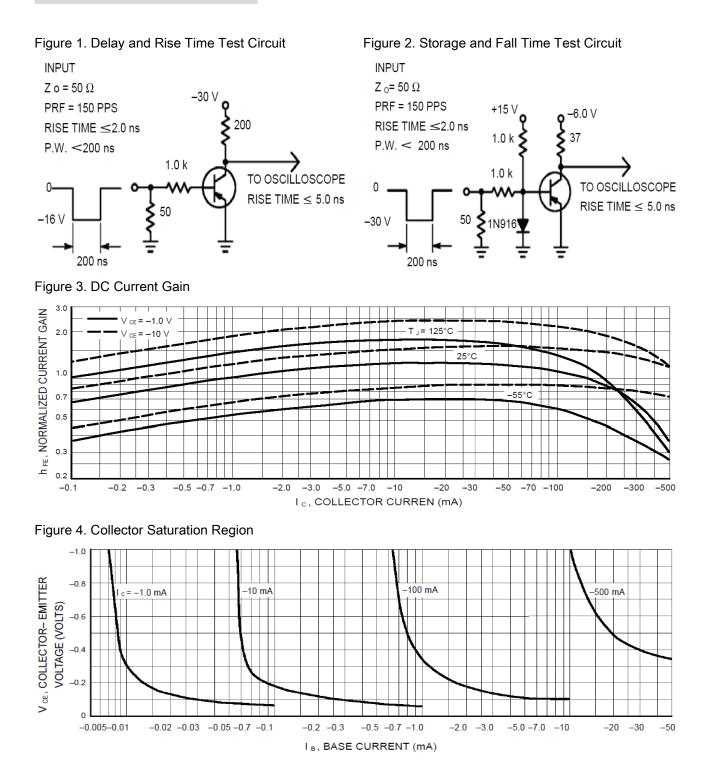
Parameter	Symbol	Max	Unit
Total Device Dissipation FR-5 BoardNOTE1			
T _A = 25°C	PD	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction to Ambient	R _{0JA}	556	°C/W
Total Device Dissipation Alumina SubstrateNOTE2			
T _A = 25°C	PD	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	Reja	417	°C/W
Junction and Storage Temperature	TJ, Tstg	-55 to +150	°C

NOTE1: FR-5 = 1.0 x 0.75 x 0.062 in.

NOTE2: Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

ELECTRICAL CHARACTERISTICS

 T_A = 25°C unless otherwise noted.


Parameter	Symbol	Conditions	Min	Max	Unit	
OFFCHARACTERISTICS						
Collector–Emitter Breakdown Voltage ^{NOTE3}	V (BR)CEO	$I_{\rm C}$ = -10mAdc, $I_{\rm B}$ = 0	-60	-	Vdc	
Collector-Emitter Breakdown Voltage	V _{(BR)CBO}	$I_{\rm C}$ = -10µAdc, $I_{\rm E}$ = 0	-60	-	Vdc	
Emitter-Base Breakdown Voltage	V(BR)EBO	$I_E = -10\mu Adc$, $I_C = 0$	-5.0	-	Vdc	
Collector Cutoff Current	ICEX	V_{CB} = -30Vdc, $V_{BE(OFF)}$ = -0.5Vdc	-	-50	nAdc	
Collector Cutoff Current	Ісво	V_{CB} = -50Vdc, I _E = 0 V_{CB} = -50Vdc, I _E = 0, T _A = 125°C	-	-0.010 -10	µAdc	
Base Current	lв	V_{CE} = -30Vdc, $V_{EB(OFF)}$ = -0.5Vdc	-	-50	nAdc	
ON CHARACTERISTICS						
		I _C = -0.1mAdc, V _{CE} = -10Vdc	75	-	- - - 300 -	
		I_{C} = -10mAdc, V_{CE} = -10Vdc	100	-		
DC Current Gain	h⊧∈	I_C = -1.0mAdc, V_{CE} = -10Vdc	100	-		
		I_C = -150mAdc, V_{CE} = -10Vdc ^{NOTE3}	100	300		
		I_{C} = -500mAdc, V_{CE} = -10Vdc ^{NOTE3}	50	-		
Collector-Emitter		$I_{\rm C}$ = -150mAdc, $I_{\rm B}$ = -15mAdc	-	-0.4) (da	
Saturation VoltageNOTE3	V _{CE(sat)}	$I_{\rm C}$ = -500mAdc, $I_{\rm B}$ = -50mAdc	-	-1.6	Vdc	
Base-Emitter Saturation		$I_{\rm C}$ = -150mAdc, $I_{\rm B}$ = -15mAdc	-	-1.3		
Voltage NOTE3		$V_{BE(sat)}$ I _C = -500mAdc, I _B = -50mAdc		-2.6	Vdc	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain-Bandwidth Product ^{NOTE3,4}	f _T	I_{C} = -50mAdc, V_{CE} = -20Vdc, f = 100MHz	200	-	MHz	
Output Capacitance	Cobo	$V_{CB} = -10Vdc, I_E = 0, f = 1.0MHz$	-	8.0	рF	
Input Capacitance	Cibo	V _{EB} = -2.0Vdc, I _C = 0, f = 1.0MHz	-	30	рF	
Turn–On Time	ton		-	45		
Delay Time	td	- V _{cc} = -30Vdc, I _c = -150mAdc,	-	10	ns	
Rise Time	tr	− I _{B1} = -15mAdc	-	40		
Fall Time	t _f		-	30		
Storage Time	ts	$-V_{CC} = -6.0Vdc, I_C = -150mAdc,$ $-I_{B1} = I_{B2} = 15mAdc$	-	80	ns	
Turn–Off Time	t _{off}	IB1 - IB2 = ISINAUC	-	100		

NOTE3: Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%.

NOTE4: f_T is defined as the frequency at which |h f e | extrapolates to unity.

TYPICAL CHARACTERISTICS

Figure 5. Turn-On Time

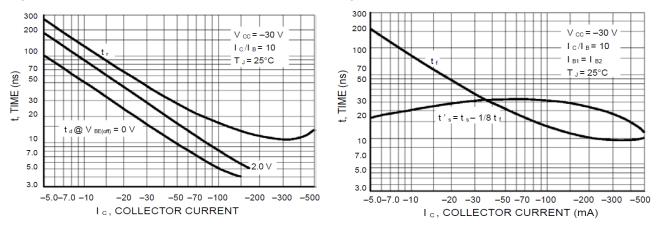


Figure 7. Frequency Effects

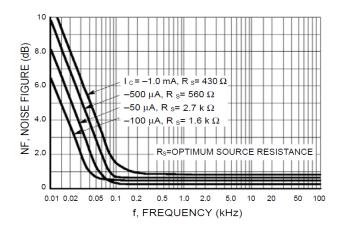
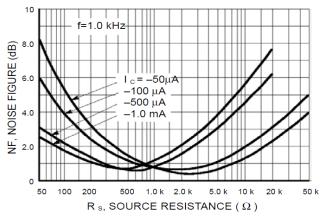



Figure 8. Source Resistance Effects

Figure 6. Turn-Off Time

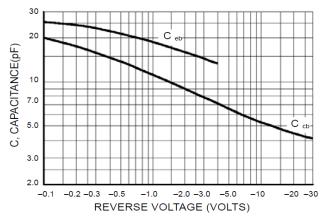
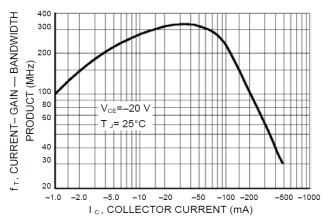
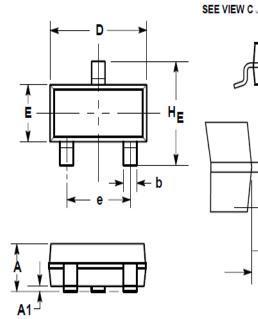
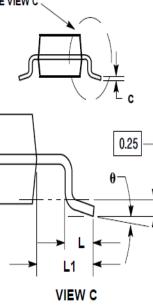
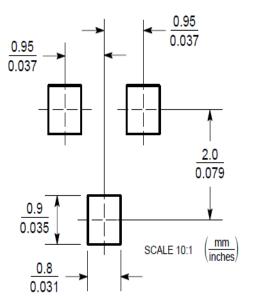



Figure 10. Current–Gain — Bandwidth Product


Figure 11. "On" Voltage Figure 12. Temperature Coefficients -1.0 +0.5 T _= 25°C V BE(sat) @ I _C /I _B = 10 0 -0.8 R _{evc} for V _{CE(sat)} V, VOLTAGE (VOLTS) COEFFICIENT (mV/ ° C) - 1.0 - 1.0 - 1.2 - 1.2 - 2.0 V _{BE(on)} @ V _{CE} = −10 V -0.6 - 0.4 -0.2 R _{evb} for V _{be} V _{CE(sat)} @ I _C/I _B = 10 0 -2.5 -0.1 -0.2 -0.5 -1.0 -2.0 -5.0 -10 -20 -50 -100 -200 -500 -0.1 -0.2 -0.5 -1.0 -2.0 -5.0 -10 -20 -50 -100 -200 -500 Ic, COLLECTOR CURRENT (mA) Ic, COLLECTOR CURRENT (mA)


REV1.3 - MAY 2011 RELEASED, APR 2019 UPDATED -


PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

SOLDERING FOOTPRINT

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
А	0.035	0.044	0.89	1.11	
A1	0.001	0.004	0.01	0.10	
b	0.015	0.020	0.37	0.50	
с	0.003	0.007	0.09	0.18	
D	0.110	0.120	2.80	3.04	
E	0.047	0.055	1.20	1.40	
е	0.070	0.081	1.78	2.04	
L	0.004	0.012	0.10	0.30	
L1	0.014	0.029	0.35	0.69	
HE	0.083	0.104	2.10	2.64	

REV1.3 - MAY 2011 RELEASED, APR 2019 UPDATED -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.