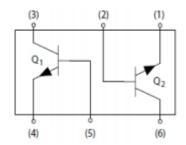


DESCRIPTION

The MBT3904D device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SC-88(SOT-363) six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

The MBT3904D is available in SC-88 package.


ORDERING INFORMATION

Package Type	Part Number		
SC-88	MBT3904D		
Note	SPQ: 3,000pcs/Reel		
AiT provides all RoHS Compliant Products			

FEATURES

- Low V_{CE(sat)}, ≤ 0.4 V
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- h_{FE}, 100–300
- Available in SC-88 package

PIN DESCRIPTION

- 1. EMITTER 2
- 2. BASE 2
- 3. COLLECTOR 1
- 4. EMITTER 1
- 5. BASE 1
- 6. COLLECTOR 2

REV1.0 - JUL 2015 RELEASED - -1

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	40Vdc
V _{CBO} , Collector-Base Voltage	60Vdc
V _{EBO} , Emitter-Base Voltage	6.0Vdc
Ic, Collector Current — Continuous	200mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Device Dissipation, FR-5 Board NOTE1@T _A = 25°C	P _D	150	mW
Thermal Resistance, Junction–to–AmbientNOTE1	Reja	833	°C/W
Junction and Storage Temperature	TJ, TSTG	-55~+150	°C

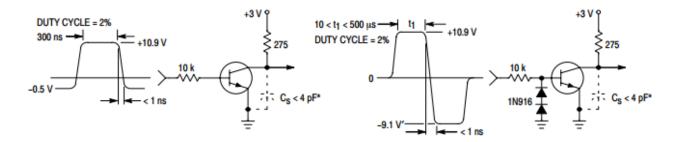
 $NOTE1: Device \ mounted \ on \ FR4 \ glass \ epoxy \ printed \ circuit \ board \ using \ the \ minimum \ recommended \ footprint.$

REV1.0 - JUL 2015 RELEASED - - 2 -

ELECTRICAL CHARACTERISTICS

T₄=25°C

Parameter	Symbol	Conditions	Min.	Max.	Unit	
OFF CHARACTERISTICS						
Collector-Emitter Breakdown	Venues la = 1 0mAda la = 0		40	-	V	
Voltage	V _{BR(CEO)}	I_{CO} $I_{C} = 1.0 \text{mAdc}, I_{B} = 0$				
Collector-Base Breakdown	V _{(BR)CBO}	$I_{C} = 10\mu Adc, I_{E} = 0$	60	_	V	
Voltage	V (BR)CBO	ic – τομπαο, iε – σ	00	_	V	
Emitter-Base Breakdown	V _{(BR)EBO}	(BR)EBO		_	V	
Voltage	V (BR)EBO	ie – Tophao, ic – o	6	_	V	
Collector Cutoff Current	ICEX	V _{CE} = 30Vdc, V _{EB} = 3.0Vdc	-	50	nA	
Base Cutoff Current	I_{BL}	$V_{CE} = 30Vdc, V_{EB} = 3.0Vdc$	-	50	nA	
ON CHARACTERISTICS NOTE:	2	T		ı	-	
		$I_C = 0.1 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$	40	-		
		$I_C = 1.0 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$	70	-		
DC Current Gain	h _{FE}	$I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc	100	300		
		$I_C = 50$ mAdc, $V_{CE} = 1.0$ Vdc	60	-	7	
		I_C = 100mAdc, V_{CE} =1.0Vdc	30	-		
Collector-Emitter Saturation		I _C = 10mAdc, I _B = 1.0mAdc	-	0.2	.,	
Voltage	V _{CE(sat)}	I _C = 50mAdc, I _B = 5.0mAdc	-	0.3	V	
Base-Emitter Saturation		$I_C = 10$ mAdc, $I_B = 1.0$ mAdc	- 0		V	
Voltage	V _{BE(sat)}	I _C = 50mAdc, I _B = 5.0mAdc	-	1 1		
SMALL-SIGNAL CHARACTE	RISTICS					
Current-Gain-Bandwidth		I _C = 10mAdc, V _{CE} = 20Vdc,	000			
Product	f⊤	f = 100MHz	300	-	MHz	
Output Capacitance	C _{obo}	$V_{CB} = 5.0 Vdc, I_{E} = 0, f = 1.0 MHz$	-	4	pF	
Input Capacitance	Cibo	$V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz$	-	8	pF	
leavet leave and are a	L	V_{CE} = 10Vdc, I_{C} = 1.0mAdc,	4	10	kΩ	
Input Impedance	h _{ie}	f = 1.0 kHz	1			
Valley Frank Daffa		V_{CE} = 10Vdc, I_{C} = 1.0mAdc,	0.5	8	40.4	
Voltage Feedback Ratio	h _{re}	f = 1.0 kHz	0.5		x10 ⁻⁴	
Small–Signal Current Gain		V_{CE} = 10Vdc, I_{C} = 1.0mAdc,	400	400		
	h _{fe}	f = 1.0 kHz	100	400		
Output Admittance	h _{oe}	V_{CE} = 10Vdc, I_{C} = 1.0mAdc,	4	40		
Output Admittance		f = 1.0 kHz	1	40	µmhos	
	NF	V _{CE} =5V, I _C =100μA, R _S =1.0k,		 		
Noise Figure		f=1.0kHz	- 5		dB	
SWITCHING CHARACTERIST	rics					
Delay Time	t _d	$V_{CC} = 3.0 \text{Vdc}, V_{BE} = -0.5 \text{Vdc}$	-	35		
Rise Time	t r	$I_{C} = 10$ mAdc, $I_{B1} = 1.0$ mAdc	-	- 35 ns		
Storage Time	ts	V _{CC} = 3.0Vdc, I _C = 10mAdc,	-			
213.492					ns	


NOTE2: Pulse Test: Pulse Width <300 $\,\mu s,$ Duty Cycle <2.0%.

REV1.0 - JUL 2015 RELEASED - - 3 -

TYPICAL CHARACTERISTICS

Figure 1. Delay and Rise Time Equivalent Test Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

^{*} Total shunt capacitance of test jig and connectors

Figure 3. Capacitance

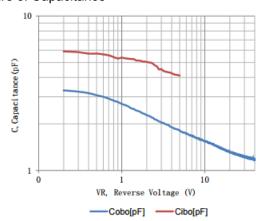


Figure 5. DC Current Gain

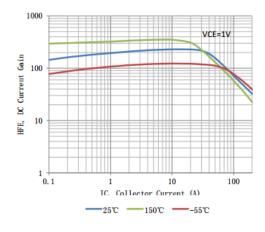


Figure 4. Current Gain

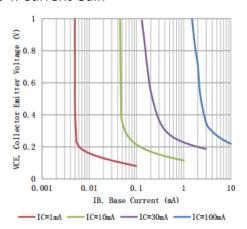
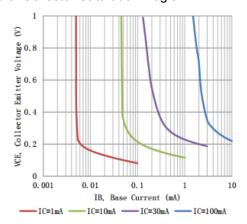



Figure 6. Collector Saturation Region

REV1.0 - JUL 2015 RELEASED - - 4 -

Figure 7. V_{CE(sat)} vs. I_C

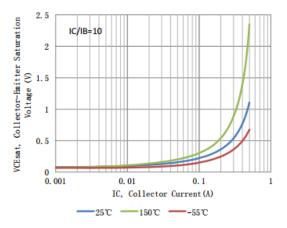


Figure 9. $V_{\text{BE(on)}}$ vs. I_{C}

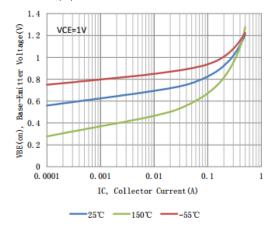
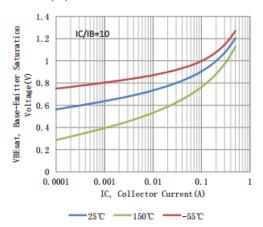
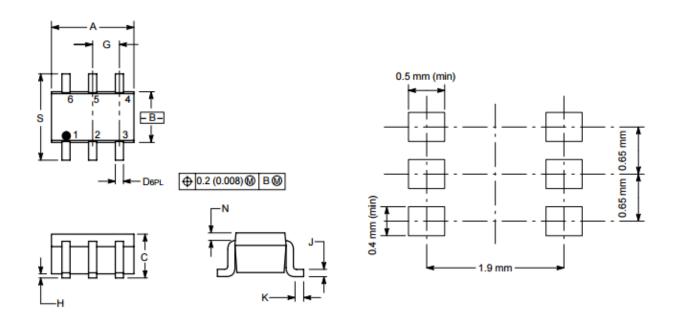



Figure 8. $V_{\text{BE(sat)}}$ vs. Ic



REV1.0 - JUL 2015 RELEASED - - 5 -

PACKAGE INFORMATION

Dimension in SC-88 Package (Unit: mm)

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н	-	0.004	1	0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008 REF		0.20 REF		
S	0.079	0.087	2.00	2.20	

REV1.0 - JUL 2015 RELEASED - - 6 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUL 2015 RELEASED - - 7