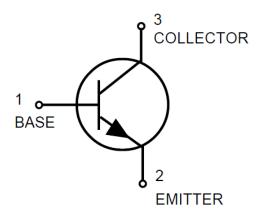


DESCRIPTION

The MBT3904T is available in SC-89 package.


FEATURES

- Simplifies Circuit Design.
- Available in SC-89 package

ORDERING INFORMATION

Package Type	Part Number		
SC-89	MBT3904T		
Package	SPQ: 3,000pcs/Reel		
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

REV1.0 - MAY 2017 RELEASED - -1-

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	40Vdc
V _{CBO} , Collector-Base Voltage	60Vdc
V _{EBO} , Emitter-Base Voltage	6.0Vdc
I _C , Collector Current-Continuous	200mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Device Dissipation FR- 4 Board, NOTE1			
T _A = 25°C	PD	200	mW
Derate above 25°C		1.6	mW/°C
Thermal Resistance, Junction to Ambient	Reja	600	°C/W
Total Device Dissipation FR-4 Board, NOTE2			
T _A = 25°C	PD	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	Reja	400	°C/W
Junction and Storage Temperature	T _J , T _{STG}	-55 to +150	°C

REV1.0 - MAY 2017 RELEASED - - 2 -

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown	V (==)===	Is = 1 OmAdo	40		Vdc
Voltage ^{NOTE3}	V (BR)CEO	V _{(BR)CEO} I _C = 1.0mAdc		-	vac
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = 10μAdc	60	-	Vdc
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	I _E = 10μAdc	6.0	-	Vdc
Base Cutoff Current	I _{BL}	V_{CE} = 30Vdc, V_{EB} = 3.0Vdc	-	50	nAdc
Collector Cutoff Current	ICEX	V_{CE} = 30Vdc, V_{EB} = 3.0Vdc	-	50	nAdc
ON CHARACTERISTICSNOTE3					
		$I_C = 0.1 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$	40	-	
		$I_C = 1.0 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$	70	-	
DC Current GainNOTE1	h _{FE}	I_C = 10mAdc, V_{CE} = 1.0Vdc	100	300	-
		I_C = 50mAdc, V_{CE} = 1.0Vdc	60	-	
		I_C = 100mAdc, V_{CE} = 1.0Vdc	30	-	
Collector–Emitter Saturation		$I_C = 10$ mAdc, $I_B = 1.0$ mAdc		0.2	
	V _{CE(sat)}	NOTE3	-	0.2	Vdc
Voltage		$I_C = 50$ mAdc, $I_B = 5.0$ mAdc	-	0.3	
Base–Emitter Saturation Voltage	V	$I_C = 10$ mAdc, $I_B = 1.0$ mAdc	0.65	0.85	Vdo
NOTE3	V _{BE(sat)}	I_C = 50mAdc, I_B = 5.0mAdc	-	0.95	Vdc

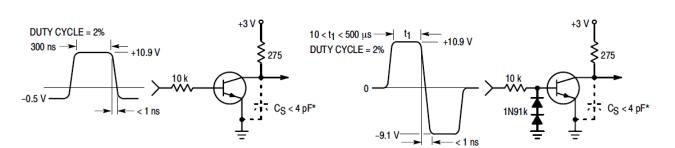
REV1.0 - MAY 2017 RELEASED - - 3 -

T_A = 25°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit	
SMALL-SIGNAL CHARACTERISTICS						
Current–Gain — Bandwidth Product	f⊤	I_C = 10mAdc, V_{CE} = 20Vdc, f = 100MHz	200	-	MHz	
Output Capacitance	C _{obo}	$V_{CB} = 5.0 Vdc, I_{E} = 0,$ f = 1.0 MHz	-	4.0	pF	
Input Capacitance	Cibo	$V_{BE} = 0.5 Vdc, I_{C} = 0,$ f = 1.0MHz	ı	8.0	pF	
Input Impedance	h _{ie}	$V_{CE} = 10Vdc$, $I_{C} = 1.0mAdc$, $f = 1.0kHz$	1.0	10	kΩ	
Voltage Feedback Ratio	h _{re}	$V_{CE} = 10Vdc$, $I_{C} = 1.0mAdc$, $f = 1.0kHz$	0.5	8.0	X10 ⁻⁴	
Small–Signal Current Gain	h _{fe}	$V_{CE} = 10Vdc$, $I_{C} = 1.0mAdc$, $f = 1.0kHz$	100	400	-	
Output Admittance	h _{oe}	$V_{CE} = 10Vdc$, $I_{C} = 1.0mAdc$, $f = 1.0kHz$	1.0	40	mhos	
Noise Figure	NF	V_{CE} = 5.0Vdc, I_{C} = 100 μ Adc, R_{S} = 1.0k Ω , f = 1.0kHz	-	5.0	dB	
SWITCHING CHARACTERISTICS						
Delay Time	t _d	$V_{CC} = 3.0 Vdc, V_{BE} = 0.5 Vdc$	-	35	200	
Rise Time	t _r	$I_C = 10$ mAdc, $I_{B1} = 1.0$ mAdc	-	35	ns	
Storage Time	ts	V_{CC} = 3.0Vdc, I_C = 10mAdc,	-	200	ne	
Fall Time	t f	$I_{B1} = I_{B2} = 1.0 \text{mAdc}$		50	ns	

NOTE1: FR-4 Minimum Pad. NOTE2: FR-4 1.0 x 1.0 Inch Pad.

NOTE3: Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%.


REV1.0 - MAY 2017 RELEASED - - 4 -

TYPICAL CHARACTERISTICS

Equivalent Test Circuit

Figure 1. Delay and Rise Time

^{*} Total shunt capacitance of test jig and connectors

Figure 3. Capacitance

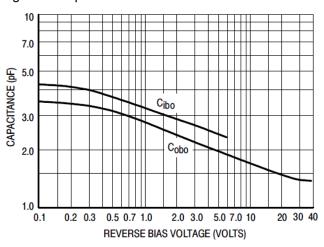


Figure 4. Charge Data

Figure 2. Storage and Fall Time

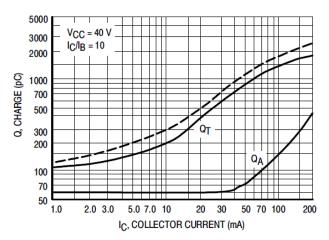


Figure 5. Turn-On Time

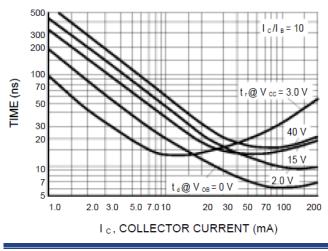
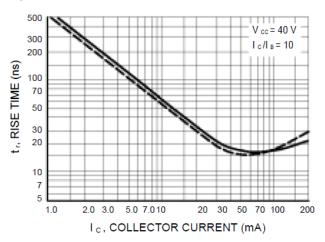



Figure 6. Rise Time

REV1.0 - MAY 2017 RELEASED - - 5 -

Figure 7. Storage Time

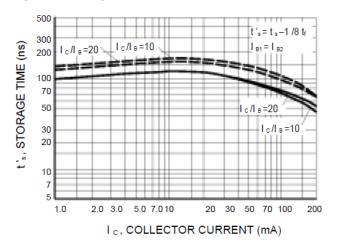
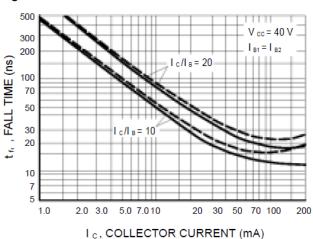



Figure 8. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

V_{CE} = 5.0Vdc, T_A = 25°C, Bandwidth =1.0Hz

Figure 9. Noise Figure

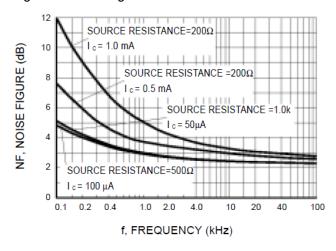
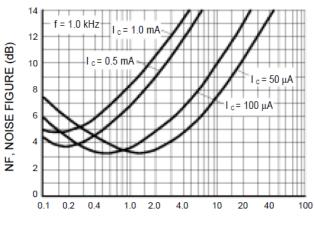



Figure 10. Noise Figure

R $_{\rm S}$, SOURCE RESISTANCE (k Ω)

REV1.0 - MAY 2017 RELEASED - - 6 -

h PARAMETERS $V_{CE} = 10Vdc$, f = 1.0kHz, $T_A = 25$ °C

Figure 11. Current Gain

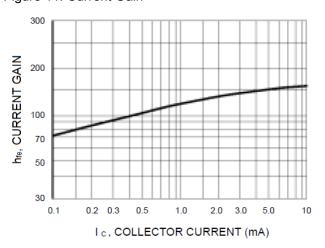


Figure 13. Input Impedance

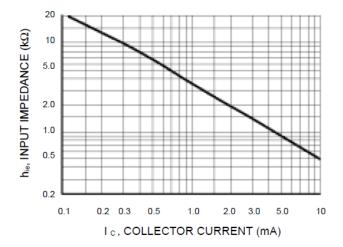


Figure 12. Output Admittance

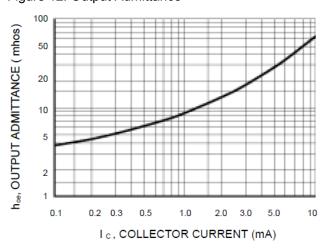
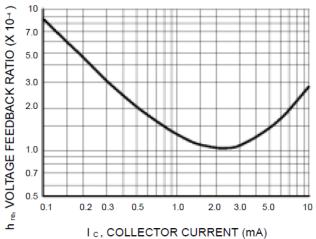



Figure 14. Voltage Feedback Ratio

REV1.0 - MAY 2017 RELEASED - - 7 -

TYPICAL STATIC CHARACTERISTICS

Figure 15. DC Current Gain

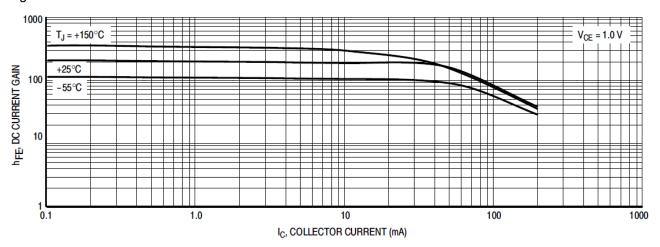


Figure 16. Collector Saturation Region

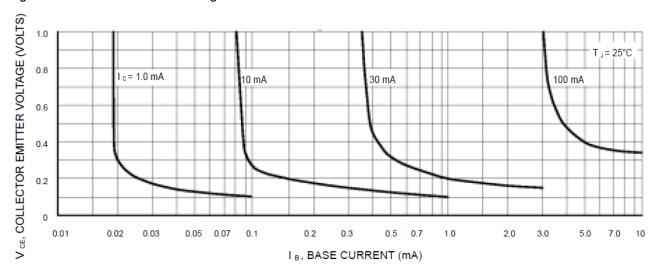


Figure 17. "ON" Voltages

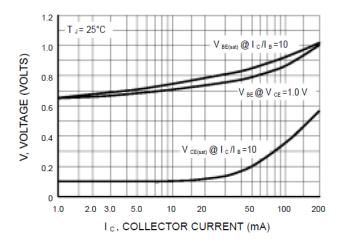
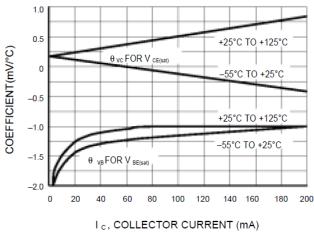
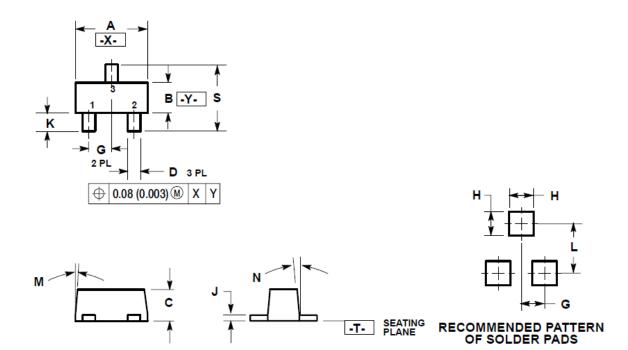



Figure 18. Temperature Coefficients



REV1.0 - MAY 2017 RELEASED - - 8 -

PACKAGE INFORMATION

Dimension in SC-89 Package (Unit: mm)

DIM	MILLIM	ETERS	INCHES		
DIIVI	MIN	MAX	MIN	MAX	
Α	1.50	1.70	0.059	0.067	
В	0.75	0.95	0.030	0.040	
С	0.60	0.80	0.024	0.031	
D	0.23	0.33	0.009	0.013	
G	0.50 BSC		0.020 BSC		
Н	0.53 REF		0.021 REF		
J	0.10	0.20	0.004	0.008	
K	0.30	0.50	0.012	0.020	
L	1.10 REF		0.043	REF	
М	-	10°	-	10°	
N	-	10°	-	10°	
S	1.50	1.70	0.059	0.067	

REV1.0 - MAY 2017 RELEASED - - 9 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAY 2017 RELEASED - - 10 -