

DESCRIPTION

The MBT3906L is available in SOT-23 Package.

FEATURES

Available in SOT-23 Package

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	MBT3906L		
Note SPQ:3,000pcs/Reel			
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector - Emitter Voltage	-40Vdc
V _{CBO} , Collector - Base Voltage	-40Vdc
V _{EBO} , Emitter - Base Voltage	-5.0Vdc
I _C , Collector Current - Continuous	-200mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Device Dissipation FR-5 Board ^{NOTE1}			
T _A = 25°C	PD	225	mW
Derate above 25°C		1.8	mW/°C
Total Device Dissipation Alumina SubstrateNOTE2			
T _A = 25°C	PD	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction to Ambient	Reja	417	°C/W
Junction and Storage Temperature	T_J,T_stg	-55 to +150	°C

NOTE1: FR-5 = $1.0 \times 0.75 \times 0.062$ in.

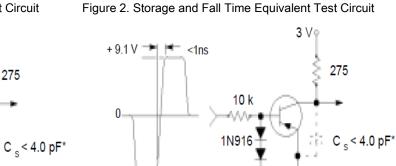
NOTE2: Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min	Max	Unit	
OFFCHARACTERISTICS						
Collector-Emitter Breakdown Voltage ^{NOTE3}	V _{(BR)CEO}	I _C = -1.0mAdc, I _B = 0	-40	-	Vdc	
Collector-Base Breakdown Voltage	V _{(BR)CBO}	I _C = -10μAdc, I _E = 0	-40	-	Vdc	
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	$I_E = -10 \mu Adc, I_C = 0$	-5.0	-	Vdc	
Base Cutoff Current	I _{BL}	V_{CE} = -30Vdc, V_{EB} = -3.0Vdc	-	-50	nAdc	
Collector Cutoff Current	Icex	V _{CE} = -30Vdc, V _{EB} = -3.0Vdc	-	-50	nAdc	
ON CHARACTERISTICS NOT	E2					
		$I_C = -0.1 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$	60	-	-	
		I_C = -1.0mAdc, V_{CE} = -1.0Vdc	80	-	-	
DC Current GainNOTE1	h _{FE}	$I_C = -10$ mAdc, $V_{CE} = -1.0$ Vdc	100	300	-	
		$I_C = -50 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$	60	-	-	
		I _C = -100mAdc, V _{CE} =-1.0 Vdc	30	-	-	
Collector-Emitter	.,	$I_C = -10 \text{mAdc}, I_B = -1.0 \text{mAdc}^{\text{NOTE3}}$	-	-0.25		
Saturation Voltage	V _{CE(sat)}	$I_C = -50 \text{mAdc}$, $I_B = -5.0 \text{mAdc}$	-	-0.4	Vdc	
Base-Emitter Saturation		$I_C = -10 \text{mAdc}, I_B = -1.0 \text{mAdc}$	-0.65	-0.85		
Voltage NOTE3	$V_{BE(sat)}$	$I_C = -50$ mAdc, $I_B = -5.0$ mAdc	-	-0.95	Vdc	
SMALL-SIGNAL CHARACT	ERISTICS	,	I	I		
Current-Gain-Bandwidth		$I_C = -10 \text{mAdc}$, $V_{CE} = -20 \text{Vdc}$,	050			
Product	f⊤	f = 100MHz	250	-	MHz	
Output Capacitance	C _{obo}	$V_{CB} = -5.0 \text{Vdc}, I_E = 0, f = 1.0 \text{MHz}$	-	4.5	pF	
Input Capacitance	Cibo	$V_{BE} = -0.5Vdc, I_{C} = 0, f = 1.0MHz$	-	10	pF	
Input Impedancen	h _{ie}	$V_{CE} = -10Vdc$, $I_{C} = -1.0mAdc$, $f = 1.0kHz$	2.0	12	kΩ	
Voltage Feedback Ratio	h _{re}	$V_{CE} = -10Vdc, I_{C} = -1.0mAdc,$ f = 1.0kHz	0.1	10	x10-4	
Small–Signal Current Gain	h _{fe}	V _{CE} = -10Vdc, I _C = -1.0mAdc, f = 1.0kHz	100	400	-	
Output Admittance	h _{oe}	V _{CE} = -10Vdc, I _C = -1.0mAdc, f = 1.0kHz	3.0	60	µmhos	
Noise Figure	N _F	V_{CE} = -5.0Vdc, I_C = -100μAdc, R_S = 1.0k Ω , f = 1.0kHz	-	4.0	dB	
SWITCHING CHARACTERISTICS						
Delay Time	t d	$V_{CC} = -3.0 \text{Vdc}, V_{BE} = 0.5 \text{Vdc}$	-	35	ns	
Rise Time	tr	I _C = -10mAdc, I _{B1} = -1.0mAdc	-	35		
Storage Time	ts	$V_{CC} = -3.0 \text{Vdc}$, $I_C = -10 \text{mAdc}$,	-	225		
Fall Time	t f	t _f I _{B1} = I _{B2} = -1.0mAdc		75	ns	

NOTE1: FR-5 = $1.0 \times 0.75 \times 0.062$ in.

NOTE2: Alumina = $0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.


NOTE3: Pulse Width <300µ s; Duty Cycle <2.0%.

TYPICAL CHARACTERISTICS

Figure 1. Delay and Rise Time Equivalent Test Circuit

10 k

3 V

*Total shunt capacitance of test jig and connectors

10 < t₁ < 500 μs

DUTY CYCLE = 27

Figure 3. Capacitance

DUTY CYCLE = 2%

- 10.6 V -

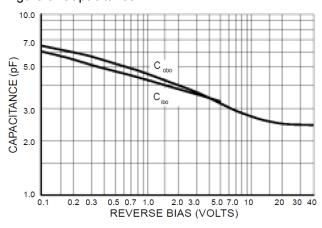


Figure 4. Charge Data

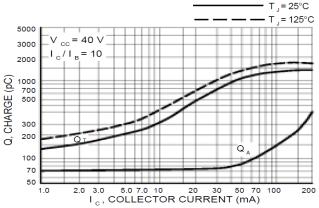


Figure 5. Turn-On Time

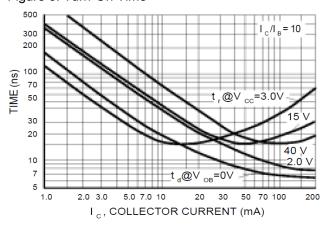
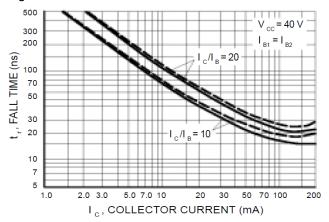



Figure 6. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $(V_{CE} = -5.0 \text{Vdc}, T_A = 25^{\circ}\text{C}, Bandwidth = 1.0 \text{ Hz})$

Figure 7. Noise Figure

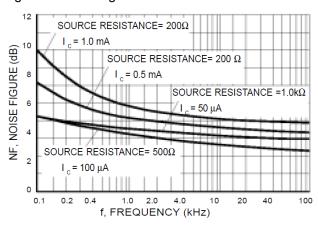
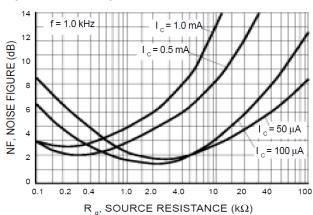



Figure 8. Noise Figure

h PARAMETERS (V_{CE} = 10Vdc, f = 1.0 kHz, T_A = 25°C)

Figure 9. Current Gain

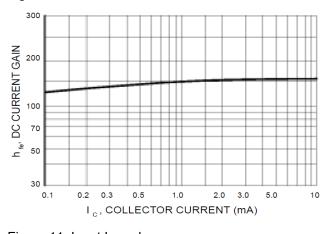


Figure 10. Output Admittance

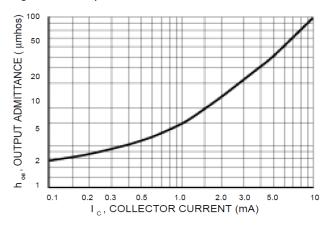


Figure 11. Input Impedance

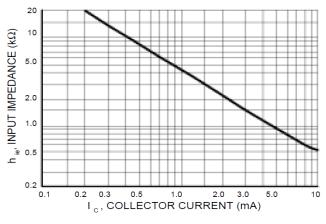
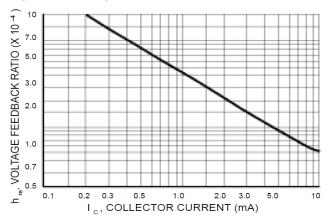



Figure 12. Voltage Feedback Ratio

TYPICAL STATIC CHARACTERISTICS

Figure 13. DC Current Gain

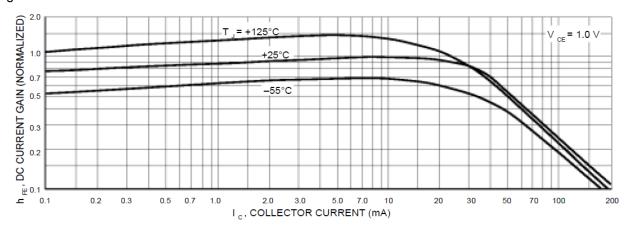


Figure 14. Collector Saturation Region

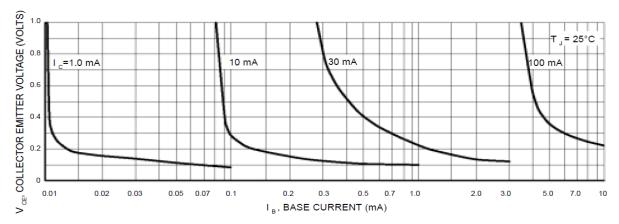


Figure 15. "ON" Voltages

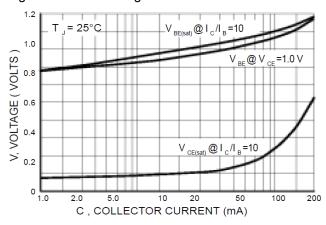
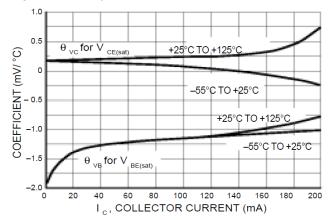
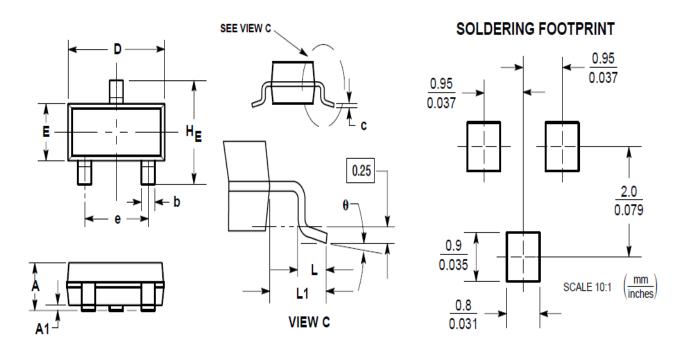




Figure 16. Temperature Coefficients

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
Α	0.035	0.044	0.89	1.11
A1	0.001	0.004	0.01	0.10
b	0.015	0.020	0.37	0.50
С	0.003	0.007	0.09	0.18
D	0.110	0.120	2.80	3.04
Е	0.047	0.055	1.20	1.40
е	0.070	0.081	1.78	2.04
L	0.004	0.012	0.10	0.30
L1	0.014	0.029	0.35	0.69
HE	0.083	0.104	2.10	2.64

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.