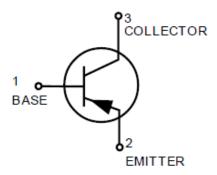
DESCRIPTION

These transistors are designed for general purpose amplifier applications. They are housed in the SC-70 which is designed for low power surface mount applications.

The MBT3906W is available in SC-70 package.

FEATURES


- ROHS compliance
- Available in SC-70 package

ORDERING INFORMATION

Package Type	Part Number			
SC-70	MBT3906W			
Note 3,000pcs/ Reel				
AiT provides all RoHS Compliant Products				

PIN DESCRIPTION

PNP MBT3906W

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	-40Vdc
V _{CBO} , Collector-Base Voltage	-40Vdc
V _{EBO} , Emitter-Base Voltage	- 5.0Vdc
I _C , Collector Current-Continuous	-200mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Package Dissipation ^{NOTE1}			
T _A = 25°C	PD	150	mW
Thermal Resistance, Junction to Ambient	Reja	833	°C/W
Junction and Storage Temperature	TJ, TSTG	-55 to +150	°C

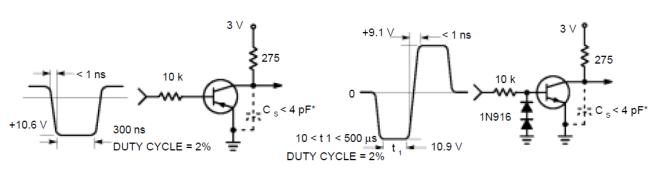
NOTE1: Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint

ELECTRICAL CHARACTERISTICS

T_A = 25°C unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit	
OFFCHARACTERISTICS						
Collector–Emitter	V	L - 4 0 - A d - L - 0	-40	-	Vdc	
Breakdown Voltage NOTE1	V (BR)CEO	$I_C = -1.0$ mAdc, $I_B = 0$	-40			
Collector-Base Breakdown	V _{(BR)CBO}	$I_C = -10\mu Adc$, $I_E = 0$	-40	-	Vdc	
Voltage	V (BR)CBO	IC ΤΟμΑάς, IE - 0	-40			
Emitter-Base Breakdown	$V_{(BR)EBO}$	$I_{E} = -10 \mu Adc, I_{C} = 0$	-5.0	-	Vdc	
Voltage	V (BR)EBO	IE ΤΟμΑάς, IC - 0	-5.0			
Base Cutoff Current	I_{BL}	V_{CE} = -30Vdc, V_{EB} = -3.0Vdc	-	-50	nAdc	
Collector Cutoff Current	I _{CEX}	V_{CE} = -30Vdc, V_{EB} = -3.0Vdc	-	-50	nAdc	
ONCHARACTERISTICSNOTE	2					
	h _{FE}	$I_C = -0.1$ mAdc, $V_{CE} = -1.0$ Vdc	60	-	-	
		$I_C = -1.0$ mAdc, $V_{CE} = -1.0$ Vdc	80	-		
DC Current Gain		$I_C = -10$ mAdc, $V_{CE} = -1.0$ Vdc	100	300		
		$I_C = -50$ mAdc, $V_{CE} = -1.0$ Vdc	60	-		
		$I_C = -100 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$	30	-		
Collector–Emitter		$I_C = -10$ mAdc, $I_B = -1.0$ mAdc	-	- 0.25) / I	
Saturation Voltage	VCE(SAT)	$I_C = -50$ mAdc, $I_B = -5.0$ mAdc	-	-0.4	Vdc	
Base-Emitter Saturation	V _{BE(SAT)}	$I_C = -10$ mAdc, $I_B = -1.0$ mAdc	-0.65	-0.85	Vdc	
Voltage	A RF(2VI)	$I_C = -50$ mAdc, $I_B = -5.0$ mAdc	-	-0.95	Vuc	

NOTE2: Pulse Test: Pulse Width≤300µs; Duty Cycle≤2.0%.


$T_A = 25$ °C unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain-Bandwidth	4 _	I_{C} =-10mAdc, V_{CE} =-20Vdc, f = 100MHz	250	-	MHz	
Product	f⊤	ICTOTTIAGE, VCE20 VGC,1 - TOOMITZ				
Output Capacitance	Сово	V_{CB} = -5.0Vdc, I_E = 0,f = 1.0MHz	-	4.5	pF	
Input Capacitance	Сіво	$V_{EB} = -0.5 Vdc, I_C = 0, f = 1.0 MHz$	-	10.0	pF	
Input Impedance	h _{IE}	V _{CE} = -10Vdc,I _C =-1.0mAdc,f = 1.0kHz	2.0	12	ΚΩ	
Voltage Feedback Ratio	h _{RE}	V _{CE} =-10Vdc,I _C =-1.0mAdc,f = 1.0kHz	0.1	10	X 10 ⁻⁴	
Small-Signal Current	h	\\ 10\\do.l 1 0\\do.l 1 0\\do.f = 1 0\\do.f	100	400	-	
Gain	h _{FE}	V_{CE} =-10Vdc, I_{C} =-1.0mAdc, f = 1.0kHz				
Output Admittance	hoe	V_{CE} =-10Vdc, I_{C} =-1.0mAdc, f = 1.0kHz	3.0	60	μΩ	
Noise Figure	NF	V_{CE} =-5.0Vdc, I_{C} =-100 μ Adc, R_{S} =1.0k Ω , f =1.0kHz	-	4.0	dB	
SWITCHING CHARACTERISTICS						
Delay Time	t⊳	V_{CC} =-3.0Vdc, V_{BE} = 0.5Vdc	-	35	ns	
Rise Time	t _R	I _C =-10mAdc, I _{B1} =-1.0mAdc	-	35	ns	
Storage Time	t s	V _{CC} = -3.0Vdc, I _C =-10mAdc		225	ns	
Fall Time	t⊦	I _{B1} = I _{B2} = -1.0mAdc -		75	ns	

TYPICAL CHARACTERISTICS

Equivalent Test Circuit

Figure 1. Delay and Rise Time

^{*} Total shunt capacitance of test jig and connectors

Figure 3. Capacitance

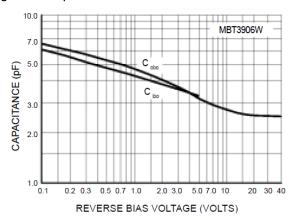


Figure 5. Turn-On Time

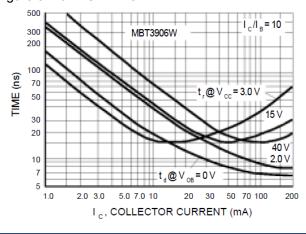


Figure 4. Charge Data

Figure 2. Storage and Fall Time

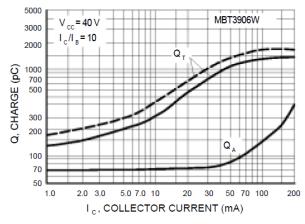
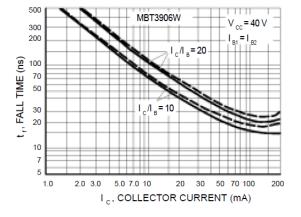



Figure 6. Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $V_{CE} = -5.0 \text{Vdc}$, $T_A = 25^{\circ}\text{C}$, Bandwidth = 1.0 Hz

Figure 7

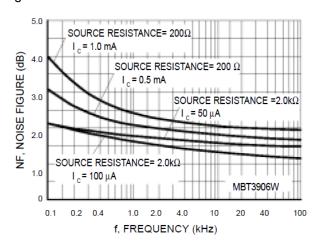
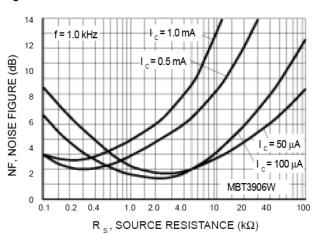



Figure 8

h PARAMETERS V_{CE} = 10Vdc, f = 1.0kHz, T_A = 25°C

Figure 9. Current Gain

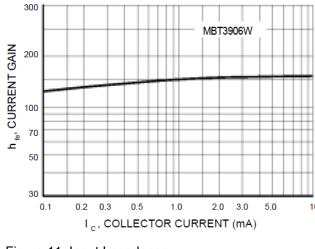


Figure 10. Output Admittance

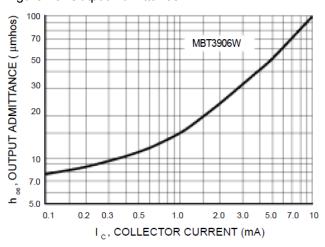


Figure 11. Input Impedance

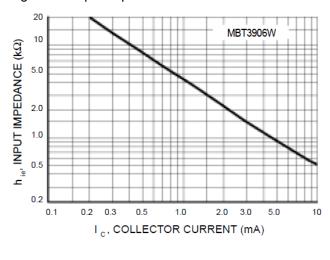
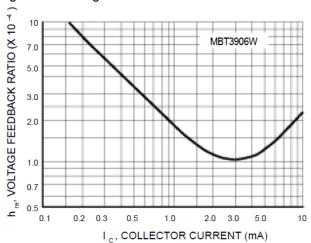



Figure 12. Voltage Feedback Ratio

STATIC CHARACTERISTICS

Figure 13. DC Current Gain

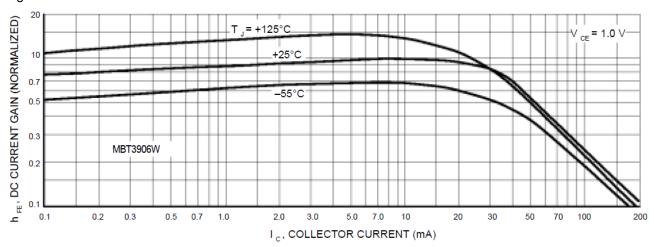


Figure 14. Collector Saturation Region

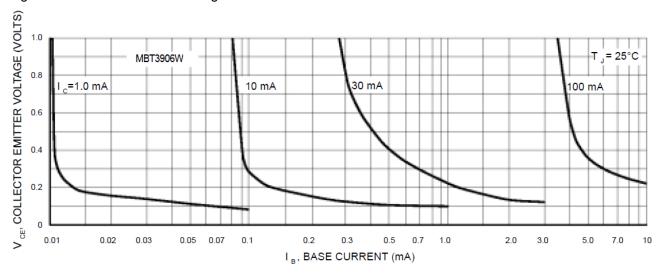


Figure 15. "ON" Voltages

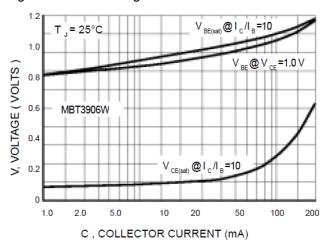
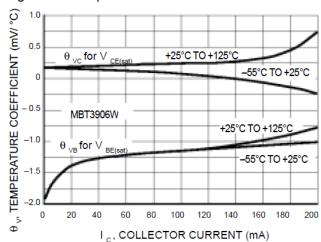
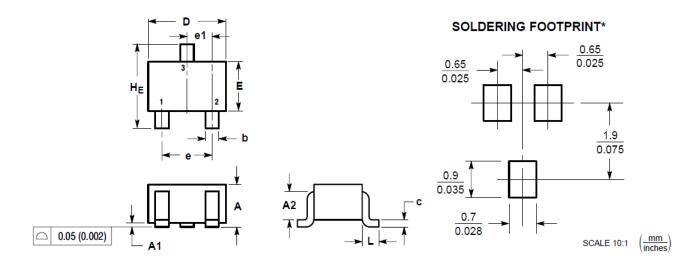




Figure 16. Temperature Coefficients

PACKAGE INFORMATION

Dimension in SC-70 Package (Unit: mm)

DIM	MILLIMETERS		INCHES		
	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.032	0.040	
A1	0.00	0.10	0.000	0.004	
A2	0.7	0.7 REF		0.028 REF	
b	0.30	0.40	0.012	0.016	
С	0.10	0.25	0.004	0.010	
D	1.80	2.20	0.071	0.087	
Е	1.15	1.35	0.045	0.053	
е	1.20	1.40	0.047	0.055	
e1	0.65 BSC		0.026 BSC		
L	0.425 REF		0.017 REF		
HE	2.00	2.40	0.079	0.095	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.