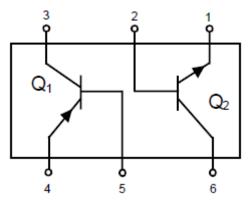
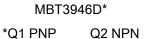
AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

The MBT3946D device is a spin-off of our popular • SOT-23/SOT-323 three-leaded device. It is • designed for general purpose amplifier applications • and is housed in the SOT-363 six-leaded surface • mount package. By putting two discrete devices in • one package, this device is ideal for low-power • surface mount applications where board space is at • a premium.

FEATURES


- h_{FE}, 100–300
- Low V_{CE(sat)}, < 0.4 V
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- RoHS compliance
- Available in SC-88 package


The MBT3946D is available in SC-88 package.

ORDERING INFORMATION

Package Type	Part Number				
SC-88	MBT3946D				
Note 3,000pcs/ Reel					
AiT provides all RoHS Compliant Products					

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	NPN / PNP	40Vdc / -40Vdc
V _{CBO} , Collector-Base Voltage	NPN / PNP	60Vdc / -40Vdc
V _{EBO} , Emitter-Base Voltage	NPN / PNP	6.0Vdc / - 5.0Vdc
Ic, Collector Current-Continuous	NPN / PNP	200mAdc / -200mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Package Dissipation ^{NOTE1}			
$T_A = 25^{\circ}C$	PD	150	mW
Thermal Resistance, Junction to Ambient	Reja	833	°C/W
Junction and Storage Temperature	Tj, Tstg	-55 to +150	°C

NOTE1: Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint

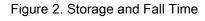
ELECTRICAL CHARACTERISTICS

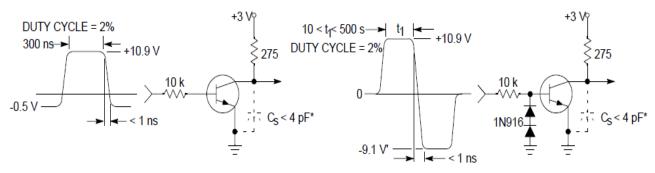
 $T_A = 25^{\circ}C$, unless otherwise noted

Parameter	Symbol	Conditions		Min	Max	Unit	
OFFCHARACTERISTICS							
Collector-Emitter	V (BR)CEO	$I_{\rm C}$ = 1.0mAdc, $I_{\rm B}$ = 0	NPN	40	-	Vdc	
Breakdown Voltage ^{NOTE2}		$I_{\rm C}$ = -1.0mAdc, $I_{\rm B}$ = 0	PNP	-40	-		
Collector-Base		$I_C = 10 \mu Adc, I_E = 0$	NPN	60	-) (ala	
Breakdown Voltage	V(br)cbo	$I_{\rm C}$ =-10µAdc, $I_{\rm E}$ = 0	PNP	-40	-	Vdc	
Emitter-Base		$I_E = 10 \mu Adc$, $I_C = 0$	NPN	6.0	-) (da	
Breakdown Voltage	V(br)ebo	$I_E = -10 \mu Adc, I_C = 0$	PNP	-5.0	-	Vdc	
Deep Cutoff Current	1	V_{CE} = 30Vdc, V_{EB} = 3.0Vdc	NPN	-	50		
Base Cutoff Current	I _{BL}	V_{CE} = -30Vdc, V_{EB} = -3.0Vdc	PNP	-	-50	nAdc	
Collector Cutoff Current	1	V_{CE} = 30Vdc, V_{EB} = 3.0Vdc	NPN	-	50	nAdc	
Collector Cutoff Current	ICEX	V_{CE} = -30Vdc, V_{EB} = -3.0Vdc	PNP	-	-50		
ONCHARACTERISTICS ^N	OTE2						
	hfe	I _C = 0.1mAdc, V _{CE} = 1. 0Vdc		40	-	-	
		I_C = 1.0mAdc, V_{CE} = 1.0Vdc	NPN	70	-		
		I _C = 10mAdc,V _{CE} = 1.0Vdc		100	300		
		I_C = 50mAdc, V_{CE} = 1.0Vdc		60	-		
		I_{C} = 100mAdc, V_{CE} = 1.0Vdc		30	-		
DC Current Gain		$I_{C} = -0.1 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$	PNP	60	-		
		$I_C = -1.0$ mAdc, $V_{CE} = -1.0$ Vdc		80	-		
		$I_C = -10 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$		100	300		
		I_C = -50mAdc, V_{CE} = -1.0Vdc		60	-		
		$I_{C} = -100 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$		30	-		
	Vce(sat)	I_{C} = 10mAdc, I_{B} = 1.0mAdc	NPN	-	0.2	Vdc	
Collector-Emitter		$I_{\rm C}$ = 50mAdc, $I_{\rm B}$ = 5.0mAdc		-	0.3		
Saturation Voltage		$I_{\rm C}$ = -10mAdc, $I_{\rm B}$ = -1.0mAdc	PNP	-	- 0.25		
		$I_{\rm C}$ = -50mAdc, $I_{\rm B}$ = -5.0mAdc		-	-0.4		
	VBE(SAT)	$I_{\rm C}$ = 10mAdc, $I_{\rm B}$ = 1.0mAdc		0.65	0.85	- Vdc	
Base–Emitter		$I_{\rm C}$ = 50mAdc, $I_{\rm B}$ = 5.0mAdc	NPN	-	0.95		
Saturation Voltage		$I_{\rm C}$ = -10mAdc, $I_{\rm B}$ = -1.0mAdc	PNP	-0.65	-0.85		
		$I_{\rm C}$ = -50mAdc, $I_{\rm B}$ = -5.0mAdc		-	-0.95		

NOTE2: Pulse Test: Pulse Width≤300µs; Duty Cycle≤2.0%.

$T_A = 25^{\circ}C$, unless otherwise noted


Parameter	Symbol	Conditions		Min	Max	Unit	
SMALL-SIGNAL CHARACTERISTICS							
Current-Gain-Bandwidth	£	Ic=10mAdc,VcE=20Vdc,f = 100MHz	NPN	300	-	MU-	
Product	f⊤	I_{C} =-10mAdc, V_{CE} =-20Vdc,f = 100MHz	PNP	250	- MHz		
		V _{CB} = 5.0Vdc, I _E = 0,f = 1.0MHz	NPN	-	4.0	- nE	
Output Capacitance	Cobo	V _{CB} = -5.0Vdc, I _E = 0,f = 1.0MHz	PNP	PR - 4.5 PF		рн	
lanut Orașeitanea	0	$V_{EB} = 0.5 V dc, I_C = 0, f = 1.0 M Hz$	NPN	-	8.0	pF	
Input Capacitance	Cibo	V_{EB} = -0.5Vdc, I _C = 0,f = 1.0MHz	PNP	-	10.0		
	Ŀ	V _{CE} = 10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	1.0	10		
Input Impedance	h _{ie}	V _{CE} = -10Vdc,I _C =-1.0mAdc,f = 1.0kHz	PNP	2.0	12	KΩ	
Valtana Faadhaalt Datia	L	V _{CE} =10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	0.5	8.0	X10-4	
Voltage Feedback Ratio	h _{re}	V _{CE} =-10Vdc,I _C =-1.0mAdc,f = 1.0kHz	PNP	0.1	10		
Small–Signal Current	Ŀ	V _{CE} =10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	100	400		
Gain	h _{FE}	V _{CE} =-10Vdc,I _C =-1.0mAdc,f = 1.0kHz	PNP	100	400	-	
Output Admittanaa	h _{oe}	V _{CE} =10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	1.0	40	µmhos	
Output Admittance		V _{CE} =-10Vdc,I _C =-1.0mAdc,f = 1.0kHz	PNP	3.0	60		
	NF	V_{CE} =5.0Vdc,Ic=100µAdc, Rs=1.0k Ω ,		5.0 4.0	-	dB	
Naisa Figura		f =1.0kHz	NPN				
Noise Figure		V_{CE} =-5.0Vdc,I _C =-100µAdc, R _S =1.0k Ω ,	PNP				
		f =1.0kHz	FINF				
SWITCHING CHARACTE	SWITCHING CHARACTERISTICS						
Delay Time	td	V_{CC} =3.0Vdc, V_{BE} = -0.5Vdc	NPN	-	35		
Delay Time		V_{CC} =-3.0Vdc, V_{BE} = 0.5Vdc	PNP	-	35		
Rise Time	tr	Ic =10mAdc, I _{B1} =1.0mAdc	NPN	-	35	ns	
		I _C =-10mAdc, I _{B1} =-1.0mAdc	PNP	-	35		
Storago Timo	ts	V _{CC} = 3.0Vdc, I _C =10mAdc	NPN	-	200		
Storage Time		V_{CC} = -3.0Vdc, I _C =-10mAdc	PNP	-	225		
	4	I _{B1} = I _{B2} = 1.0mAdc	NPN	-	50	ns	
Fall Time	t _f	I _{B1} = I _{B2} = -1.0mAdc	PNP	-	- 75		



TYPICAL CHARACTERISTICS

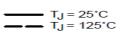
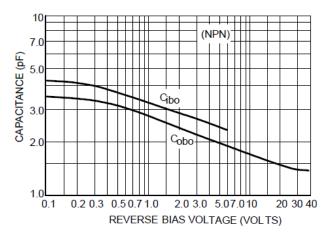
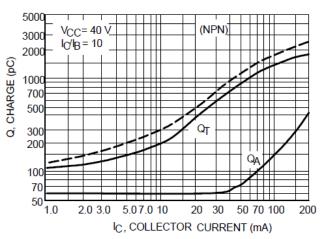
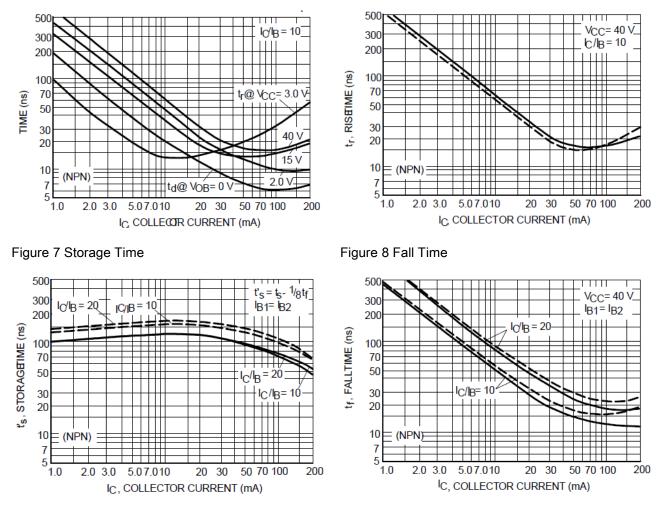

NPN

Figure 1. Delay and Rise Time

* Total shunt capacitance of test jig and connectors


Figure 4. Charge Data

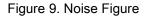

Figure 5. Turn±On Time

Figure 6. Rise Time

 V_{CE} = 5.0Vdc, T_A = 255°C, Bandwidth =1.0 Hz

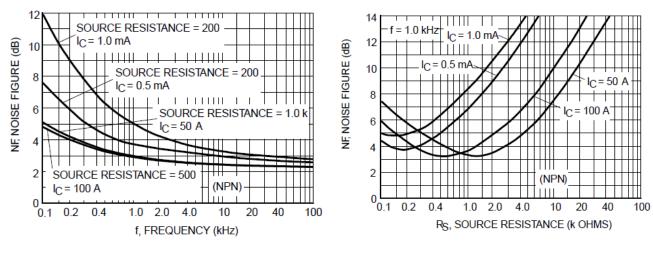


Figure 10. Noise Figure

h PARAMETERS V_{CE} = 10Vdc, f = 1.0kHz, T_A = 25°C

Figure 11. Current Gain

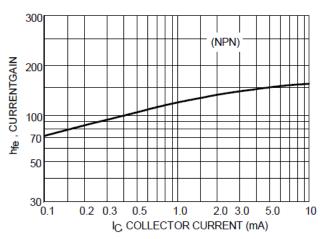


Figure 13. Input Impedance

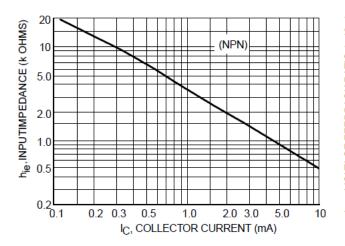


Figure 12. Output Admittance

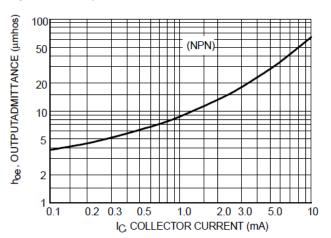
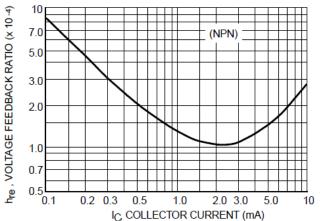



Figure 14. Voltage Feedback Ratio

Figure 15. DC Current Gain

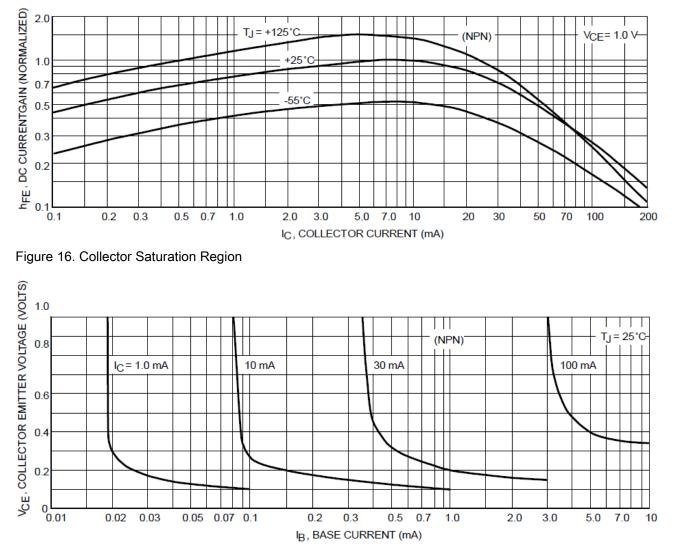
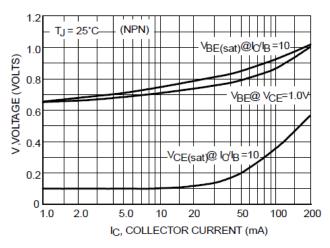
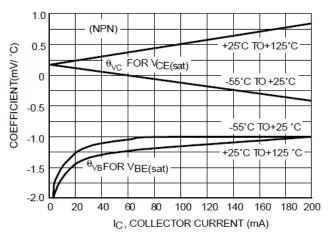
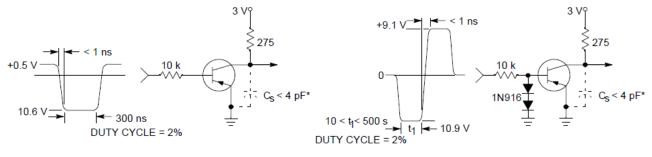


Figure 17. "ON" Voltages


Figure 18. Temperature Coefficients

PNP

Figure 19. Delay and Rise Time Equivalent Test Circuit Figure 20. Storage and Fall Time Equivalent Test Circuit

* Total shunt capacitance of test jig and connectors

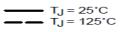
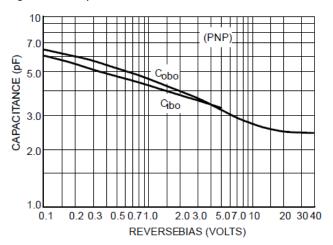
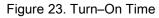




Figure 21. Capacitance

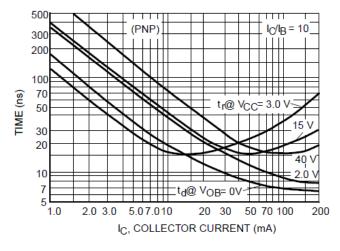
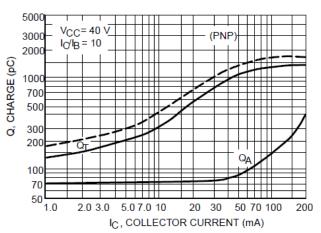
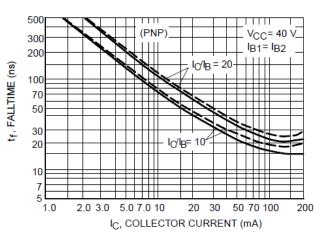
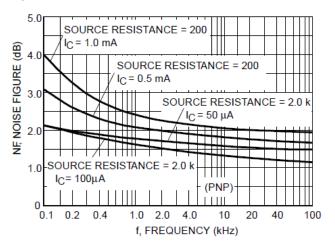
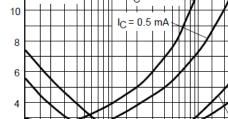




Figure 22. Charge Data

Figure 24. Fall Time

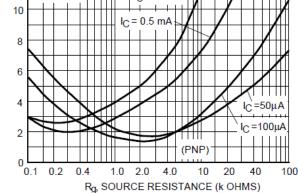




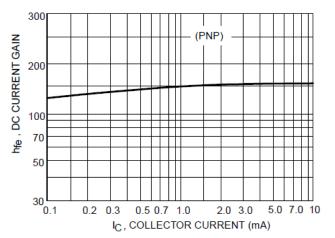
TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $V_{CE} = \pm 5.0 Vdc$, $T_A = 25^{\circ}C$, Bandwidth =1.0 Hz

Figure 25



NF NOISE FIGURE (dB)


= 1.0 kHz

10

h PARAMETERS $V_{CE} = \pm 10 V dc$, f = 1.0kHz, T_A = 25°C

Figure 27. Current Gain

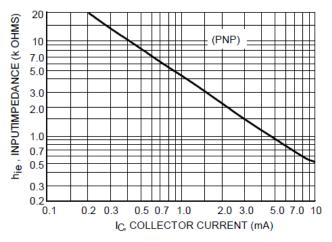


Figure 28. Output Admittance

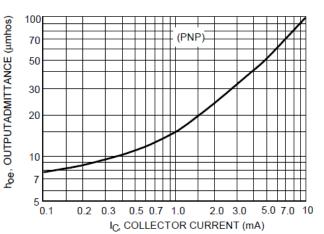
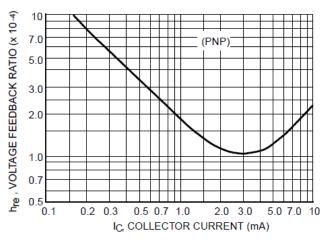
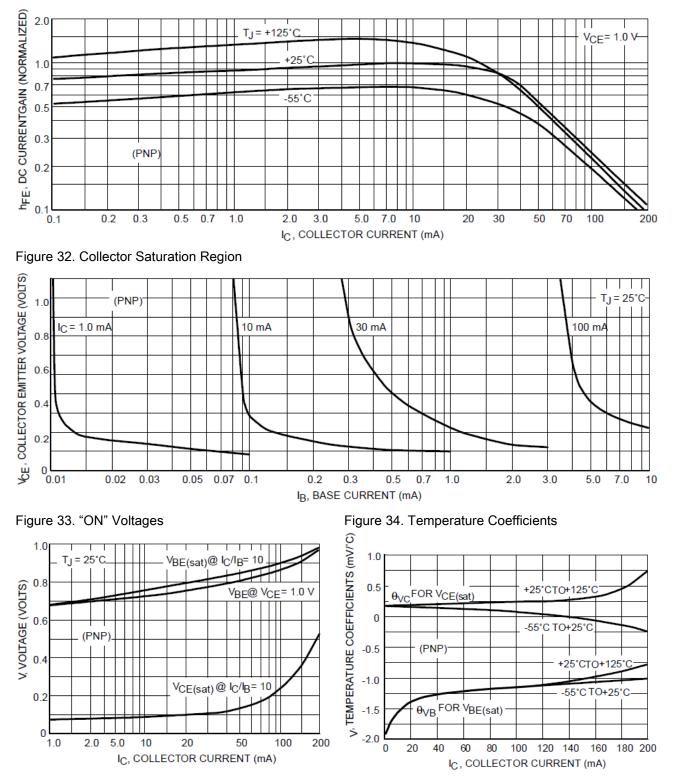
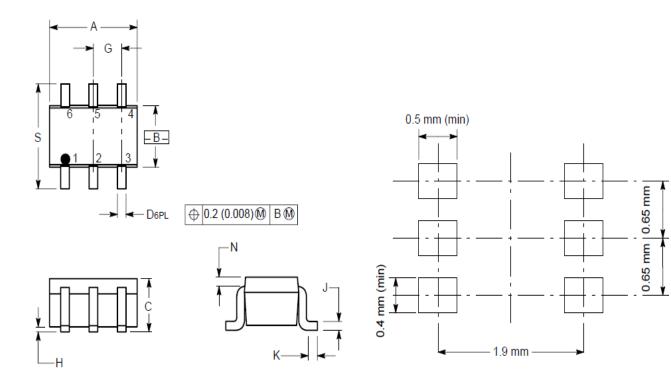




Figure 30. Voltage Feedback Ratio


Figure 31. DC Current Gain

PACKAGE INFORMATION

Dimension in SC-88 Package (Unit: mm)

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
А	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н	-	0.004	-	0.10	
J	0.004	0.010	0.10	0.25	
К	0.004	0.012	0.10	0.30	
N	0.008 REF		0.20	REF	
S	0.079	0.087	2.00	2.20	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.