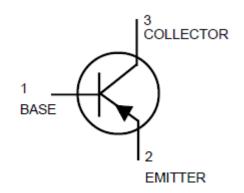


DESCRIPTION

The MBT4403L is available in SOT-23 package


FEATURES

• Available in SOT-23 package

ORDERING INFORMATION

Package Type	Part Number		
SOT-23	MBT4403L		
Note	3,000PCS/Reel		
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{CEO} ,Collector–Emitter Voltage	– 40Vdc
V _{CBO} , Collector–Base Voltage	– 40Vdc
V _{EBO} , Emitter–Base Voltage	– 5.0Vdc
I _C , Collector Current — Continuous	– 600mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

P _D , Total Device Dissipation FR –5 Board ^{NOTE1}	T _A =25 °C	225 mW
	Derate above 25°C	1.8 mW/°C
R _{0JA} , Thermal Resistance Junction to Ambient	556 °C/W	
P _D ,Total Device Dissipation Alumina Substrate ^{Note2}	T _A = 25°C	300 mW
	Derate above 25°C	2.4 mW/°C
R _{0JA} , Thermal Resistance, Junction to Ambient	417 °C/W	
T _J ,T _{stg} , Junction and Storage Temperature	–55 to +150 °C	

NOTE1: FR-5 = 1.0 x 0.75 x 0.062 in.

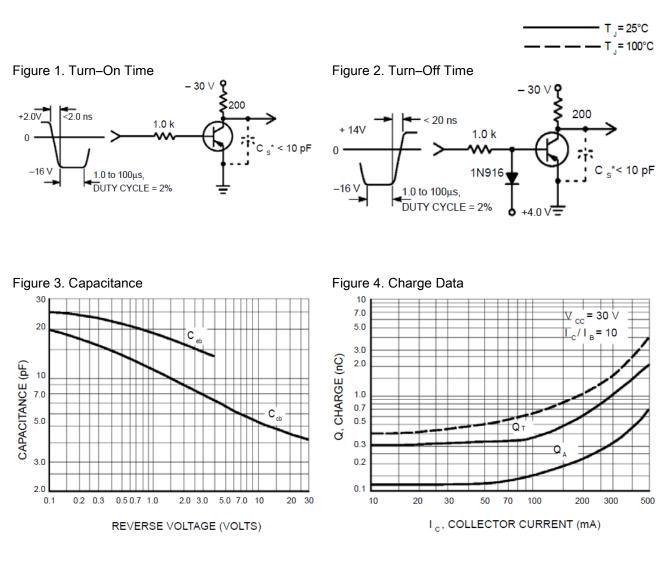
NOTE2: Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

ELECTRICAL CHARACTERISTICS

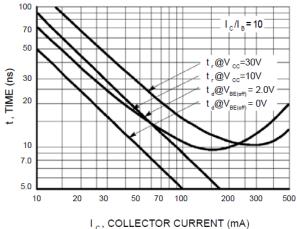
 T_A = 25°C unless otherwise specified

Parameter	Symbol	Min.	Max.	Unit		
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage ^{Note3}	V(BR)CEO	$_{\rm O}$ I _c = -1.0 mAdc, I _B = 0		-	Vdc	
Collector–Base Breakdown Voltage	V _{(BR)CB}	$I_{\rm C} = -0.1 \text{mAdc}, I_{\rm E} = 0$	- 40	-	Vdc	
Emitter–Base Breakdown Voltage	V _{(BR)EBO}	$I_E = -0.1 \text{mAdc}, I_C = 0$	- 5.0	-	Vdc	
Base Cutoff Current	IBEV	V_{CE} = -35 Vdc, V_{EB} = -0.4 Vdc	-	- 0.1	µAdc	
Collector Cutoff Current	I _{CEX}	EX $V_{CE} = -35$ Vdc, $V_{EB} = -0.4$ Vdc		- 0.1	µAdc	
ON CHARACTERISTICS						
		I_{C} = -0.1mAdc, V_{CE} = -1.0Vdc I_{C} = -1.0mAdc, V_{CE} = -1.0Vdc I_{C} = -10mAdc, V_{CE} = -1.0 Vdc	30 60 100	_		
DC Current Gain	hfe	I_{C} = -150mAdc, V_{CE} = -2.0Vdc) ^{Note3}	100	300	-	
		I_{C} = -500mAdc, V_{CE} = -2.0Vdc) Note3	20			
Collector–Emitter Saturation		$I_{\rm C}$ = -150mAdc, $I_{\rm B}$ = -15mAdc	-	- 0.4	Vdc	
Voltage Note3	V _{CE(sat)}	$I_{\rm C}$ = –500mAdc, $I_{\rm B}$ = –50mAdc	-	- 0.75	vuc	
Base-Emitter		$I_{\rm C}$ = -150mAdc, $I_{\rm B}$ = -15mAdc -		- 0.95	Vdo	
SaturationVoltage ^{Note3}	$V_{BE(sat)}$	$I_{\rm C}$ = –500mAdc, $I_{\rm B}$ = –50mAdc	-	- 1.3	Vdc	

NOTE3: Pulse Test: Pulse Width <300 µs; Duty Cycle <2.0%.


Parameter	Symbol	Conditions	Min.	Max.	Unit	
SMALL-SIGNAL CHARACTERISTICS						
Current–Gain — Bandwidth	fT	$I_C = -20$ mAdc, $V_{CE} = -10$ Vdc,	200	-	MHz	
Product	11	f = 100 MHz	200			
Collector–Base Capacitance	Ccb	$V_{CB}\text{=}-10Vdc,\ I_{E}\text{=}0,$	-	8.5	pF	
	CCD	f = 1.0 MHz				
Emitter-Base Capacitance	Ceb	V_{BE} = -0.5Vdc, I _C = 0,	-	30	pF	
	Ceb	f = 1.0 MHz	-			
Input Impedance	h _{ie}	V_{CE} = -10Vdc, I _C = -1.0mAdc,	1.5	15	kΩ	
	The	f = 1.0 kHz	1.5			
Voltage Feedback Ratio	h _{re}	V_{CE} = -10Vdc, I _C = -1.0mAdc,	0.1	8.0	X10-4	
		f = 1.0 kHz	0.1			
Small–Signal Current Gain	h _{fe}	V_{CE} = -10Vdc, I _C = -1.0mAdc,	60	500	-	
		f = 1.0 kHz	00			
Output Admittance	h _{oe}	V_{CE} = -10Vdc, I _C = -1.0mAdc,	1.0	100	µmhos	
		f = 1.0 kHz	1.0			
SWITCHING CHARACTERISTICS						
Delay Time	ta	V_{CC} = - 30Vdc,		15		
		V _{EB} = –2.0Vdc	_		ns	
Rise Time	t _d	$I_{\rm C}$ = -150mAdc,		20		
		I _{B1} = –15mAdc				
Storage Time	ts	V_{CC} = -30Vdc,		225		
		Ic = –150mAdc	-		ns	
Fall Time	tf	$I_{B1} = I_{B2} = -15 \text{mAdc}$		30		

TYPICAL CHARACTERISTICS


T_A = 25°C SWITCHING TIME EQUIVALENT TEST CIRCUITS

Scope rise time < 4.0ns *Total shunt capacitance of test jig connectors, and oscilloscope

Figure 5. Turn-On Time

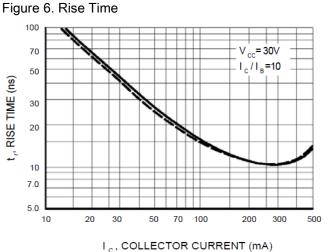
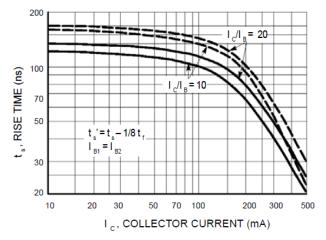
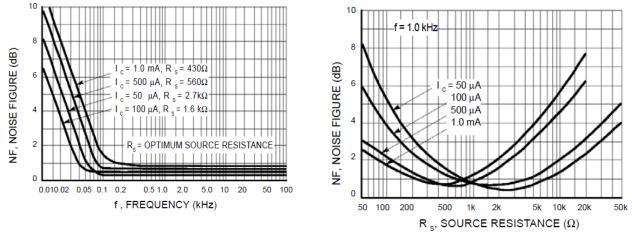
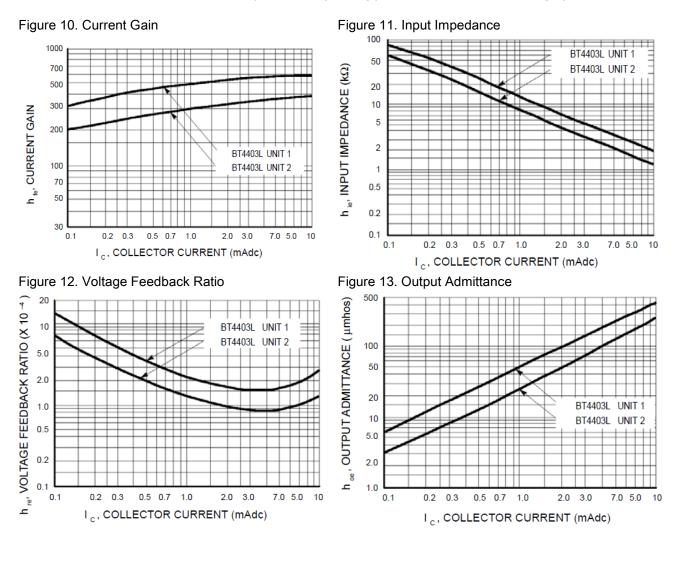




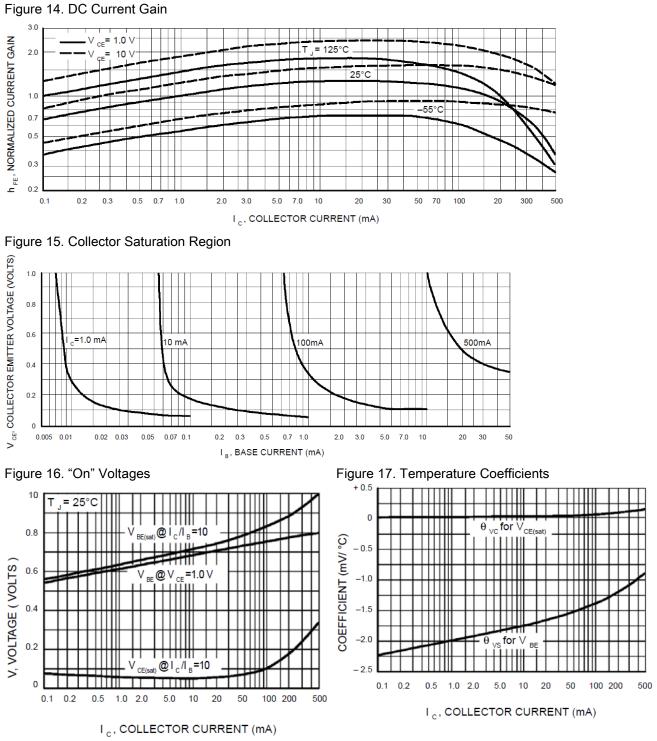
Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS

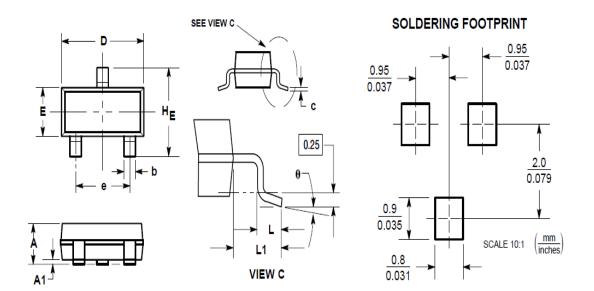
NOISE FIGURE V_{CE} = -10 Vdc, T A = 25° C Bandwidth = 1.0 Hz Figure 8. Frequency Effects Figure 9. Source Resistance Effects



h PARAMETERS


 $V_{CE} = -10Vdc, f = 1.0kHz, T_A = 25^{\circ}C$

This group of graphs illustrates the relationship between h fe and other "h" parameters for this series of Transistors. To obtain these curves, a high–gain and a low–gain unit were selected from the MBT4403L lines, and the same units were used to develop the correspondingly numbered curves on each graph.


STATIC CHARACTERISTICS

PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)

DIM	INC	HES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
А	0.035	0.044	0.89	1.11	
A1	0.001	0.004	0.01	0.10	
b	0.015	0.020	0.37	0.50	
с	0.003	0.007	0.09	0.18	
D	0.110	0.120	2.80	3.04	
E	0.047	0.055	1.20	1.40	
е	0.070	0.081	1.78	2.04	
L	0.004	0.012	0.10	0.30	
L1	0.014	0.029	0.35	0.69	
HE	0.083	0.104	2.10	2.64	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.