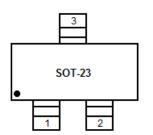
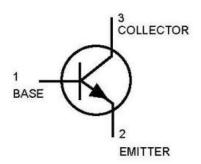


## **DESCRIPTION**

The MMBT3904 is available in SOT-23 Package.


## **FEATURES**


Available in SOT-23 Package

## ORDERING INFORMATION

| Package Type                             | Part Number        |  |  |
|------------------------------------------|--------------------|--|--|
| SOT-23                                   | MMBT3904           |  |  |
| Note                                     | SPQ: 3,000pcs/Reel |  |  |
| AiT provides all RoHS Compliant Products |                    |  |  |

## PIN DESCRIPTION





REV1.0 - JAN 2019 RELEASED - -1

### **ABSOLUTE MAXIMUM RATINGS**

| V <sub>CEO</sub> , Collector-Emitter Voltage | 40Vdc   |
|----------------------------------------------|---------|
| V <sub>CBO</sub> , Collector-Base Voltage    | 60Vdc   |
| V <sub>EBO</sub> , Emitter-Base Voltage      | 6.0Vdc  |
| Ic, Collector Current-Continuous             | 200mAdc |

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### THERMAL CHARACTERISTICS

| Parameter                                       | Symbol            | Max         | Unit  |
|-------------------------------------------------|-------------------|-------------|-------|
| Total Device Dissipation FR-5 BoardNOTE1        |                   |             |       |
| T <sub>A</sub> = 25°C                           | P <sub>D</sub>    | 225         | mW    |
| Derate above 25°C                               |                   | 1.8         | mW/°C |
| Thermal Resistance, Junction to Ambient         | R <sub>θJA</sub>  | 556         | °C/W  |
| Total Device Dissipation Alumina SubstrateNOTE2 |                   |             |       |
| T <sub>A</sub> = 25°C                           | P <sub>D</sub>    | 300         | mW    |
| Derate above 25°C                               |                   | 2.4         | mW/°C |
| Thermal Resistance Junction to Ambient          | R <sub>0</sub> JA | 417         | °C/W  |
| Junction and Storage Temperature                | TJ, Tstg          | -55 to +150 | °C    |

REV1.0 - JAN 2019 RELEASED - - 2 -



# **ELECTRICAL CHARACTERISTICS**

 $T_A = 25$ °C unless otherwise noted

| Parameter                                            | Symbol                | Conditions                                        | Min  | Max  | Unit |
|------------------------------------------------------|-----------------------|---------------------------------------------------|------|------|------|
| OFF CHARACTERISTICS                                  |                       |                                                   |      |      |      |
| Collector-Emitter Breakdown Voltage <sup>NOTE3</sup> | V <sub>(BR)</sub> CEO | $I_C = 1.0 \text{mAdc}, I_B = 0$                  | 40   | -    | Vdc  |
| Collector-Base Breakdown Voltage                     | V <sub>(BR)CBO</sub>  | I <sub>C</sub> = 10uAdc, I <sub>E</sub> = 0       | 60   | -    | Vdc  |
| Emitter-Base Breakdown Voltage                       | V <sub>(BR)EBO</sub>  | $I_E = 10 \mu Adc, I_C = 0$                       | 6.0  | -    | Vdc  |
| Base Cutoff Current                                  | I <sub>BL</sub>       | V <sub>CE</sub> = 30Vdc, V <sub>EB</sub> = 3.0Vdc | -    | 50   | nAdc |
| Collector Cutoff Current                             | ICEX                  | $V_{CE} = 30 Vdc$ , $V_{EB} = 3.0 Vdc$            | -    | 50   | nAdc |
| ON CHARACTERISTICSNOTE3                              |                       |                                                   |      |      |      |
|                                                      | h <sub>FE</sub>       | $I_C = 0.1$ mAdc, $V_{CE} = 1.0$ Vdc              | 40   | _    |      |
|                                                      |                       | $I_C$ = 1.0mAdc, $V_{CE}$ = 1.0Vdc                | 70   | -    |      |
| DC Current GainNOTE1                                 |                       | $I_C$ = 10mAdc, $V_{CE}$ = 1.0Vdc                 | 100  | 300  | -    |
|                                                      |                       | $I_C = 50$ mAdc, $V_{CE} = 1.0$ Vdc               | 60   | -    |      |
|                                                      |                       | $I_C$ = 100mAdc, $V_{CE}$ =1.0Vdc                 | 30   | -    |      |
| Collector-Emitter Saturation Voltage                 | V <sub>CE(sat)</sub>  | $I_C$ = 10mAdc, $I_B$ = 1.0mAdc                   | -    | 0.2  | Vdc  |
|                                                      |                       | $I_C = 50$ mAdc, $I_B = 5.0$ mAdc                 | -    | 0.3  |      |
| Base-Emitter Saturation                              | V <sub>BE(sat)</sub>  | $I_C = 10$ mAdc, $I_B = 1.0$ mAdc                 | 0.65 | 0.85 | Vdc  |
| Volatge <sup>NOTE3</sup>                             |                       | $I_C$ = 50mAdc, $I_B$ = 5.0mAdc                   | -    | 0.95 | Vuc  |

REV1.0 - JAN 2019 RELEASED - - 3 -



#### (Continued)

| Parameter                      | Symbol           | Conditions                                                                             | Min | Max | Unit              |  |  |
|--------------------------------|------------------|----------------------------------------------------------------------------------------|-----|-----|-------------------|--|--|
| SMALL-SIGNAL CHARACTERISTICS   |                  |                                                                                        |     |     |                   |  |  |
| Current-Gain-Bandwidth Product | f⊤               | $I_C$ = 10mAdc, $V_{CE}$ = 20Vdc, $f$ = 100MHz                                         | 300 | -   | MHz               |  |  |
| Output Capacitance             | C <sub>obo</sub> | $V_{CB} = 5.0 Vdc, I_E = 0,$<br>f = 1.0MHz                                             | -   | 4.0 | pF                |  |  |
| Input Capacitance              | C <sub>ibo</sub> | $V_{EB} = 0.5 Vdc, I_{C} = 0,$<br>f = 1.0MHz                                           | -   | 8.0 | pF                |  |  |
| Input Impedance                | h <sub>ie</sub>  | $V_{CE}$ = 10Vdc, $I_{C}$ = 1.0mAdc, $f$ = 1.0kHz                                      | 1.0 | 10  | pF                |  |  |
| Voltage Feedback Ratio         | h <sub>re</sub>  | $V_{CE}$ = 10Vdc, $I_{C}$ = 1.0mAdc, $f$ = 1.0kHz                                      | 0.5 | 8.0 | X10 <sup>-4</sup> |  |  |
| Small-Signal Current Gain      | h <sub>fe</sub>  | $V_{CE}$ = 10Vdc, $I_{C}$ = 1.0mAdc, $f$ = 1.0kHz                                      | 100 | 400 | -                 |  |  |
| Output Admittance              | h <sub>oe</sub>  | $V_{CE}$ = 10Vdc, $I_C$ = 1.0mAdc, $f$ = 1.0kHz                                        | 1.0 | 40  | θmhos             |  |  |
| Noise Figure                   | NF               | $V_{CE}$ = 5.0Vdc,<br>$I_{C}$ = 100 $\mu$ Adc, $R_{S}$ = 1.0k $\Omega$ ,<br>f = 1.0kHz | -   | 5.0 | dB                |  |  |
| SWITCHING CHARACTERISTICS      |                  |                                                                                        |     |     |                   |  |  |
| Delay Time                     | <b>t</b> d       | $V_{CC}$ = 3.0Vdc,<br>$V_{BE}$ = -0.5Vdc,                                              | -   | 35  | ns                |  |  |
| Rise Time                      | t <sub>r</sub>   | $I_C = 10 \text{mAdc}, I_{B1} = 1.0 \text{mAdc}$                                       | -   | 35  | 113               |  |  |
| Storage Time                   | ts               | $V_{CC} = 3.0 \text{Vdc}, I_C = 10 \text{mAdc},$                                       | -   | 200 | ns                |  |  |
| Fall Time                      | t <sub>f</sub>   | $I_{B1} = I_{B2} = 10$ mAdc                                                            | -   | 50  | 113               |  |  |

NOTE1: FR-5 =  $1.0 \times 0.75 \times 0.062$  in.

NOTE2: Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

NOTE3: Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2.0%

REV1.0 - JAN 2019 RELEASED --4-



#### TYPICAL CHARACTERISTICS

Figure 1. Delay and Rise Time Equivalent Test
Circuit

Figure 2. Storage and Fall Time Equivalent Test Circuit

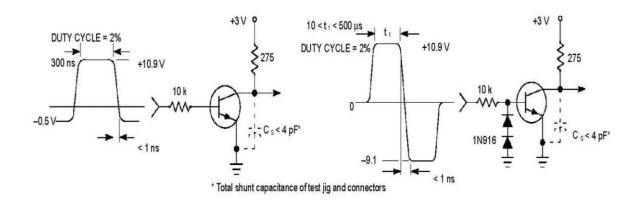



Figure 3. Capacitance

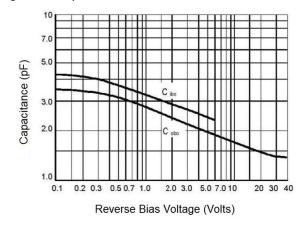



Figure 5. Turn-On Time

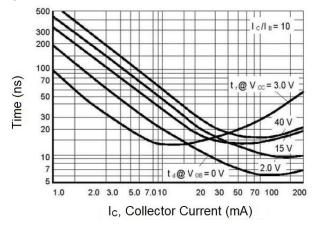



Figure 4. Charge Data

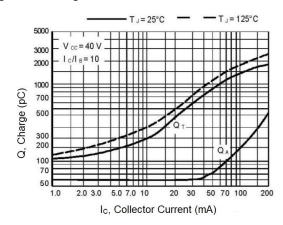
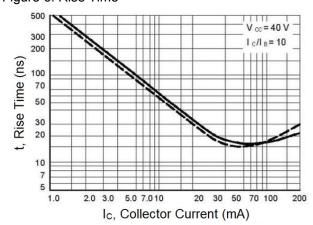




Figure 6. Rise Time



REV1.0 - JAN 2019 RELEASED - - 5 -

Figure 7. Storage Time

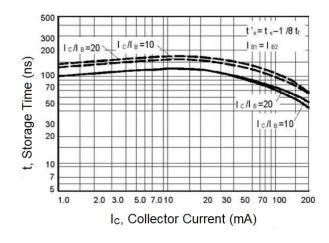
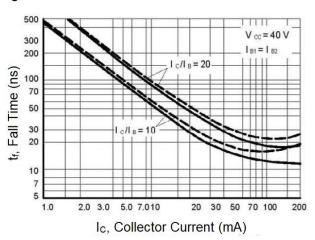




Figure 8. Fall Time



Typical Audio Small-Signal Characteristics Noise Figure Variations

 $(V_{CE} = 5.0Vdc, T_A=25^{\circ}C, Bandwidth = 1.0Hz)$ 

Figure 9.

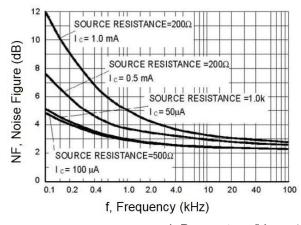
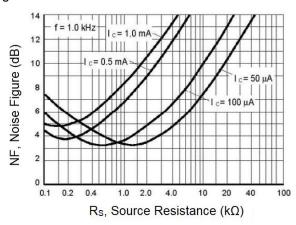




Figure 10.



h Parameters ( $V_{CE} = 10Vdc$ , f=1.0kHz,  $T_A = 25$ °C)

Figure 11. Current Gain

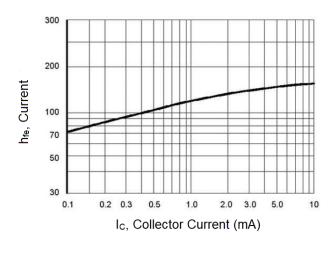
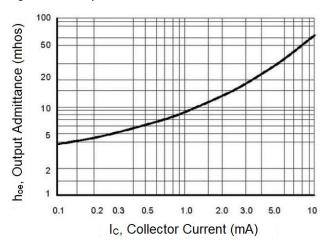




Figure 12. Output Admittance



REV1.0 - JAN 2019 RELEASED - - 6 -

Figure 13. Input Impedance

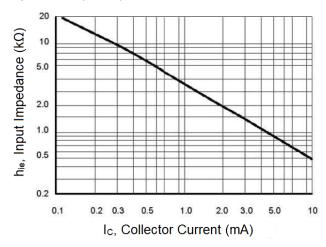
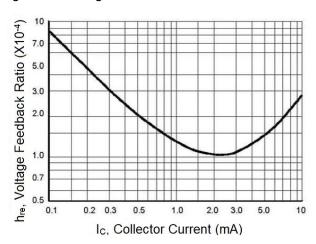
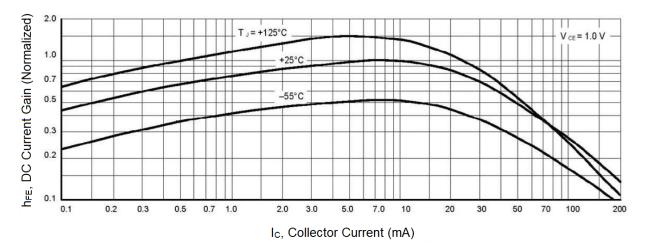
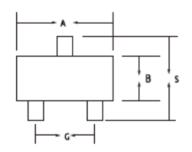
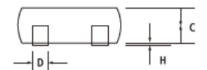




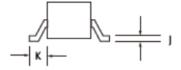

Figure 14. Voltage Feedback Ratio



Typical Static Characteristics


Figure 15. DC Current Gain





REV1.0 - JAN 2019 RELEASED - - 7

# PACKAGE INFORMATION

Dimension in SOT-23 Package (Unit: mm)







| Cymbol | Millim | neters | Inches |        |  |
|--------|--------|--------|--------|--------|--|
| Symbol | Min.   | Max.   | Min.   | Max.   |  |
| Α      | 2.80   | 3.00   | 0.1102 | 0.1190 |  |
| В      | 1.20   | 1.40   | 0.0472 | 0.0551 |  |
| С      | 0.89   | 1.11   | 0.0350 | 0.0440 |  |
| D      | 0.37   | 0.50   | 0.0150 | 0.0200 |  |
| G      | 1.78   | 2.04   | 0.0701 | 0.0807 |  |
| Н      | 0.013  | 0.100  | 0.0005 | 0.0040 |  |
| J      | 0.085  | 0.177  | 0.0034 | 0.0070 |  |
| К      | 0.35   | 0.69   | 0.0140 | 0.0285 |  |
| S      | 2.10   | 2.64   | 0.0830 | 0.1039 |  |

REV1.0 - JAN 2019 RELEASED - - 8 -



### **IMPORTANT NOTICE**

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JAN 2019 RELEASED - - 9 -