AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

The AO2903 is the dual comparator feature low offset voltage, high supply voltage capability, low supply current, low input bias current, low propagation delay and improved 2kV ED performance and input ruggedness through dedicated ESD clamps.

The AO2903 of outputs can be connected to other open-collector outputs to achieve wired-AND relationships. It can operate from 3.3V to 36V, and have low power consuming 55µA (TYP) per channel.

The AO2903 consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Quiescent current is independent of the supply voltage.

The AO2903 is available in SOP8 and MSOP8 packages.

ORDERING INFORMATION

Package Type	Part Number			
SOP8	MO	AO2903M8R		
SPQ: 4,000pcs/Reel	M8	AO2903M8VR		
MSOP8	MOO	AO2903MS8R		
SPQ: 4,000pcs/Reel	MS8	AO2903MS8VR		
Note	V: Halogen free Package R: Tape & Reel			
AiT provides all RoHS products				

FEATURES

- Supply Range: +3.3V to +36V
- Low Supply Current
 55µA (TYP) per channel at Vs = 5V
- Common-Mode Input Voltage Range Includes Ground
- Low Output Saturation Voltage
- Open-Drain Output for Maximum Flexibility
- SPECIFIED UP TO +125°C
- Available in SOP8 and MSOP8 packages

APPLICATION

- Vacuum Robot
- Single Phase UPS
- Server PSU
- Cordless Power Tool
- Wireless Infrastructure
- Motor Drives
- Building Automation
- Factory Automation & Control
- Hysteresis Comparators
- Industrial Equipment
- Test and Measurement

TYPICAL APPLICATION

PIN DESCRIPTION

NOTE1: I=Input, O=Output, P=Power

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperatu	ire range, unless otherwise noted	
Supply Voltage, Vs=(V+) - (V-)	36V	
Input Voltage Pin ^{NOTE1}		(V-)-0.3V ~ (V+)0.3V
Signal Output Voltage PinNOTE2		(V-)-0.3V ~ (V+)0.3V
Signal input Current Pin (IN+, I	-10mA ~ 10mA	
Signal Output Current PinNOTE2		-55mA ~ 55mA
Output short-circuits CurrentNOT	Continuous	
T _A , Operating Range Temperat	-40°C ~ 125°C	
TJ, Junction Temperature	150°C	
T _{STG} , Storage Temperature	-55°C ~ 150°C	
ESD Ratings		
	Human-body model (HBM), per	+2000\/
	ANSI/ESDA/JEDEC JS- 001	±2000V
	Charged device model (CDM), per JEDEC	+10001/
	specification JESD22-C101	±1000V

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

NOTE2: Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5V beyond the supply rails should be current-limited to ±55mA or less.

NOTE3: Short-circuit from output to VCC can cause excessive heating and eventual destruction.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range, unless otherwise noted

Parameter			Тур.	Max.	Unit	
Supply Voltage Vs= (V+) - (V-)	Single-Supply	3.3	-	36	N/	
	Dual-Supply	±1.65	-	±18		

ELECTRICAL CHARACTERISTICS

, = , , ,,	, <u>,</u>	
Deremeter	Symbol	Conditions

Parameter	Symbol		Conditions	Min	Тур	Max	Units
Operating Voltage Range	Vs			3.3	-	36	V
		Vs=5V, r	no load	-	110	180	
Quiescent Current	IQ	Vs=36V, no load, T₄=-40°C to +125°C		-	150	-	uA
		Vs=5V to	o 36V	-3.5	±0.8	3.5	
Input Offset Voltage	Vos	V _S =5V to 36V, T _A =-40°C to +125°C		-4	-	4	mV
		T _A =25°C		-	10	50	pА
Input Bias Current	lв	T _A =-40°0	C to +125°C	-	-	100	nA
land Offerst Oursest	I	T _A =25°C		-	10	50	pА
Input Offset Current	los	T _A =-40°0	C to +125°C	-	-	100	nA
Common-Mode Voltage		Vs=3.3V to 36V		(V-)	-	(V+)-1.5	V
Range	Vсм	V _S =3.3V to 36V T _A =-40°C to +125°C		(V-)	-	(V+)-2.0	
Large Signal Differential Voltage Amplification	A _{VD}	Vs=15V, R∟≥15k 1	Vo=1.4V to 11.4V to (V+)	50	200	-	V/mV
Low-Level Output Voltage	V _{OL}	l _{sink} ≤4mA	A, V _{ID} =-1V	-	200	300	mV
Output Current (Sinking)	Iol	Vo=1.5V	; V _{ID} =-1V; Vs=5V	6	23	-	mA
High-Level Output		(V+)=Vo	=5V; VID=1V	-	80	400	
Leakage Current	IOH-LKG	(V+)=Vo	=36V; V _{ID} =1V	-	100	500	nA
Switching Characteristics				_	_	-	
			RPU=5.1KΩ, Overdrive	_	25	-	
	Tphl	Vs=5V	=10mV		20		-
Propagation Dolov H to L			RPU=5.1KΩ, Overdrive =100mV	-	0.5	-	
Fropagation Delay H to L		Vs=36V	RPU=5.1KΩ, Overdrive =10mV	-	1.8	-	
			RPU=5.1KΩ, Overdrive =100mV	-	0.7	-	
	Трін	Vs=5V	RPU=5.1KΩ, Overdrive =10mV	-	4.1	-	us
			RPU=5.1KΩ, Overdrive =100mV	-	1.6	-	
ropagation Delay E to H			RPU=5.1KΩ, Overdrive	-	3.1	-	
		Vs	Vs=36V	RPU=5.1KΩ, Overdrive =100mV	-	1.4	-

TYPICAL PERFORMANCE CHARACTERISTICS

2.

- **Response Time vs Input Overdrives** 1. Negative Transition (Vcc=5V) 4 3.5 3 Time(us) 2.5 2 1.5 1 0.5 0 0 10 20 30 40 50 60 70 80 90 100 Overdrive(mV)
- 3. Response Time vs Input Overdrives Negative Transition (Vcc=36V)

5. Saturation Voltage vs Output Sink Current

Response Time vs Input Overdrives Positive Transition (Vcc=5V)

4. Response Time vs Input Overdrives Positive Transition (Vcc=36V)

6. Saturation Voltage vs Output Sink Current

BLOCK DIAGRAM

Detailed Description

Overview

The AO2903 family of comparators can operate up to 36V on the supply pin. This standard device has proven ubiquity and versatility across a wide range of applications. This is due to its low power and high speed. The open-drain output allows the user to configure the output's logic low voltage (V_{OL}) and can be utilized to enable the comparator to be used in AND functionality.

DETAILED INFORMATION

Application and Implementation

Application Information

AO2903 is typically used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output (logic high with pull-up) to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes this comparator optimal for level shifting to a higher or lower voltage.

Typical Application

Figure 1. Single-Ended and Differential Comparator Configurations

Detailed Design Procedure

When using the device in a general comparator application, determine the following:

- Input Voltage Range
- Minimum Overdrive Voltage
- Output and Drive Current
- Response Time

Input Voltage Range

When choosing the input voltage range, the input common mode voltage range (V_{ICR}) must be taken in to account. If temperature operation is below 25°C the V_{ICR} can range from 0V to V_{CC} - 2.0V. This limits the input voltage range to as high as V_{CC} - 2.0V and as low as 0V. Operation outside of this range can yield incorrect comparisons.

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Qumbal	Millim	neters	Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.187	0.197	
е	1.270 BSC		0.050 BSC		
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Dimension in MSOP8 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Cumhal	Millim	ieters	Inches		
Symbol	Min	Max	Min	Max	
A	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
е	0.650	BSC	0.026 BSC		
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.