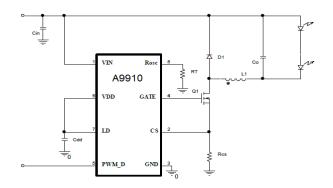
AiT Semiconductor Inc. www.ait-ic.com

DESCRIPTION

The A9910 is a PWM high-efficiency LED driver control IC. It allows efficient operation of high-brightness (HB) LEDs from voltage sources ranging from 10VDC up to 600VDC. The A9910 controls an external MOSFET at fixed switching frequencies up to 300kHz. The frequency can be programmed using a single resistor. The LED string is driven at a constant current rather than a constant voltage, thus providing a constant light output and an enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1.0A. The A9910 uses a rugged high-voltage junction isolated process that can withstand an input voltage surge up to 600V. The output current to a LED string can be programmed to any value between zero and its maximum value by applying an external control voltage at the linear dimming control input of the A9910. The A9910 provides a low-frequency PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz. The A9910 is available in SOP8 package.

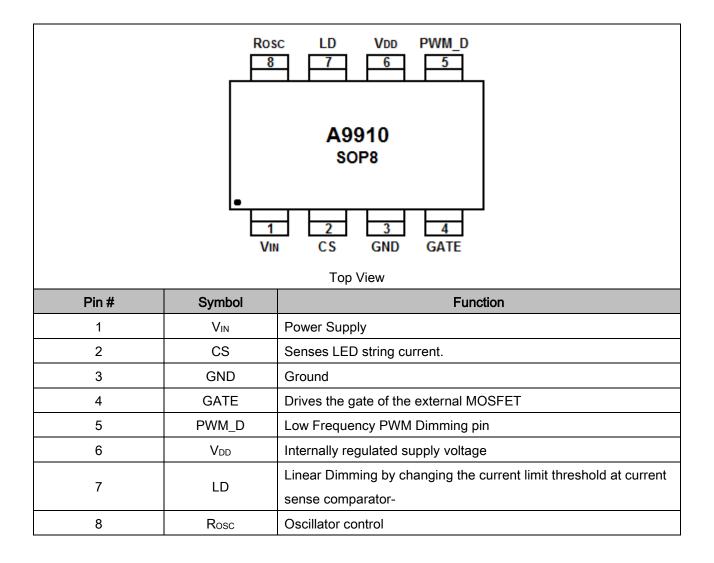
ORDERING INFORMATION

Package Type	Part Number		
SOP8	MO	A9910M8R	
SPQ: 2,500pcs/Reel	M8	A9910M8VR	
Note	R: Tape & Reel		
	V: Halogen free Package		
AiT provides all RoHS products			


FEATURES

- >90% efficiency
 - 10V to 600V input range
 - Constant-current LED driver
- Applications from a few mA to more than 1A output
- LED string from one to hundreds of diodes
- Linear and PWM dimming capability
- Input voltage surge ratings up to 600V
- Available in SOP8 Package

APPLICATION


- DC/DC or AC/DC LED driver applications
- RGB backlighting LED driver
- Backlighting of flat panel displays
- General-purpose constant current source
- Signage and decorative LED lighting
- Automotive
- Chargers

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{IN} to GND	-0.5V ~ +600V
CS, LD, PWM_D, GATE to GND	-0.3V ~ V _{DD} +0.3V
Continuous power dissipation ($T_A = +25^{\circ}C$) ^{NOTE1}	
SOP8(derate 6.3mW/°C above +25°C)	630mW
Operating Temperature Range	-40°C ~ +85°C
Junction Temperature	+125°C
Storage Temperature Range	-65°C ~ +150°C

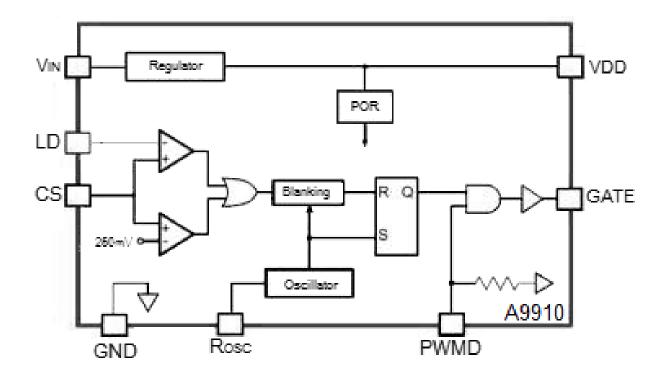
Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

NOTE1: Also limited by package power dissipation limit, whichever is lower.

ELECTRICAL CHARACTERISTICS

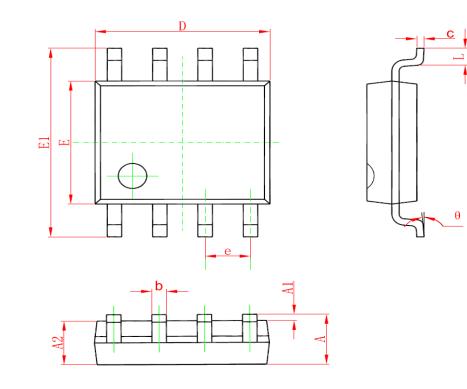
 T_A = +25°C, unless noted otherwise

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input DC supply voltage range	VINDC ^{NOTE1}	DC input voltage	10.0	-	600	V
Shut-down mode supply current	linsd	Pin PWM_D to GND, V _{IN} =8V	0.5	-	1	mA
Internally regulated voltage	V _{DD}	V _{IN} = 10 to 600V, I _{DD(ext)} =0, pin Gate open	7.0	7.5	8.0	V
Load regulation of VDD	$\Delta V_{\text{DD, load}}$	I _{DD(ext)} = 0 to 1.0mA, 500pF at GATE; R _{OSC} = 226kΩ, PWM_D= V _{DD}	0	-	100	mV
Maximal pin V _{DD} voltage	V _{DD,max}	When an external voltage is applied to pin VDD	-	-	10.0	V
V _{DD} current available for external circuitry	I _{DD(ext)}	V _{IN} = 10 to 100V	-	-	0.7	mA
VDD undervoltage lockout threshold	UVLO	V _{IN} rising	6.45	6.7	6.95	V
V _{DD} undervoltage lockout hysteresis	ΔUVLO	V _{IN} falling	-	500	-	mV
Pin PWM_D input low voltage	V _{EN(lo)}	V _{IN} = 10 to 600V	-	-	0.8	V
Pin PWM_D input high voltage	V _{EN(hi)}	V _{IN} = 10 to 600V	2.0	-	-	V
Pin PWM_D pull-down resistance	R _{EN}	V _{EN} = 5V	50	100	150	kΩ
Current sense pull-in threshold voltage	$V_{\text{CS(hi)}}$	T _A = -40 C to +85 C	225	250	275	mV
GATE high output voltage	VGATE(hi)	Iout = 10mA	V _{DD} - 0.3	-	V _{DD}	V
GATE low output voltage	VGATE(lo)	Ι _{ουτ} = -10mA	0	-	0.3	V
Oscillator frequency	fosc	Rosc = 1.00MΩ Rosc = 226kΩ	20 80	25 100	30 120	kHz



Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Maximum Oscillator PWM	D _{MAX hf}	F _{PWM hf} = 25kHz, at GATE, CS	-	-	100%	
Duty Cycle		to GND				
Pin LD (Linear Dimming)	VLD	$T_{1} = -295^{\circ}O_{1} \lambda (m = -10) \lambda$	0		250	
voltage range		T _A = <85°C, V _{IN} = 12V	0	-	250	mV
Current sense blanking	T _{BLANK}	$T_{BLANK} \qquad V_{CS} = 0.55 V_{LD}, V_{LD} = V_{DD}$	150	215	280	ns
interval						
Delay from CS to GATE lo t _{DELAY}	1	V_{IN} = 12V, V_{LD} = 0.15, V_{CS} = 0	-	-	300	ns
	IDELAY	to 0.22V after TBLANK				
GATE output rise time	t _{RISE}	C _{GATE} = 500pF, V _{DD} = 7.5V	30	-	50	ns
GATE output fall time	t _{FALL}	C_{GATE} = 500pF, V_{DD} = 7.5V	30	-	50	ns

NOTE1: Also limited by package power dissipation limit, whichever is lower.


BLOCK DIAGRAM

PACKAGE INFORMATION

Dimension in SOP8 (Unit: mm)

Symbol	Min	Max	
А	1.350	1.750	
A1	0.100	0.250	
A2	1.350	1.550	
b	0.330	0.510	
С	0.170	0.250	
D	4.700	5.100	
E	3.800	4.000	
E1	5.800	6.200	
е	1.270 BSC		
L	0.400	1.270	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.