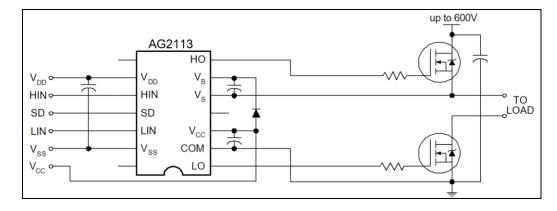
DESCRIPTION

The AG2113 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels based on P_SUB P_EPI process. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.

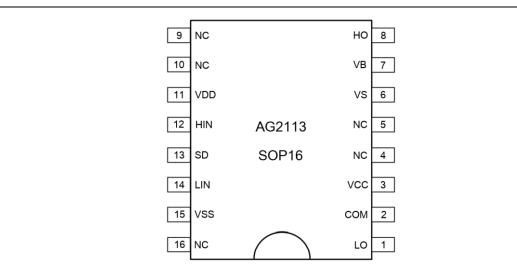
AG2113 is available in a SOP16 package.

ORDERING INFORMATION

Package Type	Part Number		
SOP16	MAG	AG2113M16R	
SPQ: 1,500pcs/Reel	M16	AG2113M16VR	
Note	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			


FEATURES

- Floating channel designed for bootstrap
 - -Fully operational to +600 V
 - -Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout (UVLO) for both channels
- Separate logic supply range from 5 to 20V
 - -Logic and power ground ±5V offset
- 3.3 V /5 V/15 V logic compatible
- 2.5A Output Current Capability
- Matched propagation delay for both channels
- Output in phase with inputs


APPLICATION

- DC/DC Converter
- Power MOSFET or IGBT driver
- DC/AC Converter

TYPICAL APPLICATION

PIN DESCRIPTION

SOP16, M16 Top View

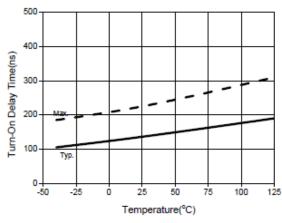
Pin#	Symbol	Function
1	LO	Low side gate drive output, in phase with LIN
2	СОМ	Low side return
3	Vcc	Low side supply
6	Vs	High side floating supply return
7	V _B	High side floating supply
8	НО	High side gate drive output, in phase with HIN
11	V_{DD}	Logic supply
12	HIN	Logic input for high side gate driver output (HO) , in phase
16	SD	Logic input for shutdown
14	LIN	Logic input for low side gate driver output (LO), in phase
15	Vss	Logic ground
16	NC	Not Connected

ABSOLUTE MAXIMUM RATINGS

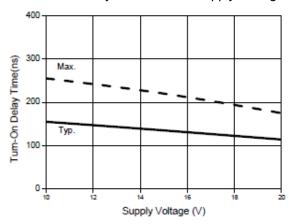
Parameter	Symbol	Min.	Max.	Units
High side floating supply	V _B	-0.3	625	V
High side floating supply return	Vs	V _B - 25	V _B + 0.3	
High side gate drive output	V _{HO}	Vs - 0.3	V _B + 0.3	
Low side supply	Vcc	-0.3	25	
Low side gate drive output	V_{LO}	-0.3	V _{CC} + 0.3	
Logic supply	V_{DD}	-0.3	V _{CC} + 0.3	
Logic ground	Vss	V _{CC} -25	Vcc + 0.3	
Logic input	V _{IN}	V _{SS} -0.3	V _{DD} + 0.3	
Allowable Offset Supply Voltage Transient	dVs/dt		50	V/ns
HBM Model	ESD	2.5		kV
Machine Model	ESD	200		V
Package Power Dissipation @ T _A ≤25°C (14 Lead DIP)	DD		1.6	W
Package Power Dissipation @ T _A ≤25°C (16 Lead SOW)	PD		1.25	
Thermal Resistance Junction to Ambient (14 Lead DIP)	Б		75	°C /W
Thermal Resistance Junction to Ambient (16 Lead SOW)	R _{thJA}		100	
Junction Temperature	TJ		150	°C
Storage Temperature	Ts	-55	150	
Lead Temperature (Soldering, 10 seconds)	TL		300	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

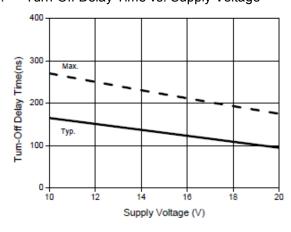
RECOMMENDED OPERATING CONDITIONS

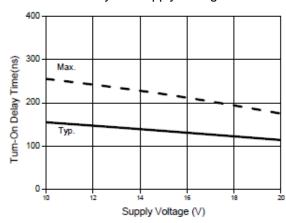

Parameter	Symbol	Min.	Max.	Units
High side floating supply	V _B	Vs + 10	Vs + 20	
High side floating supply return	Vs	COM - 8	600	
High side gate drive output voltage	V _{HO}	Vs	V _B	
Low side supply	Vcc	10	20	V
Low side gate drive output voltage	V _{LO}	0	Vcc	V
Logic supply	V _{DD}	V _{SS} +3	Vss+20	
Logic ground	Vss	-5	5	
Logic input voltage(HIN & LIN & SD)	Vin	0	V_{DD}	
Ambient temperature	TA	-40	125	°C

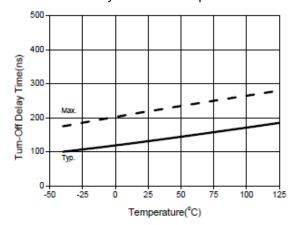
ELECTRICAL CHARACTERISTICS

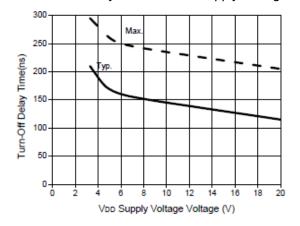

Parameter	Symbol	Conditions	Min	Тур.	Max	Units
Dynamic						
V_{BIAS} (V _{CC} , V_{BS}) = 15V, C_L = 1000pF, T_A = 25°C, unless otherwise specified.						
Turn-On Propagation Delay	ton		1	135	220	
Turn-Off Propagation Delay	t _{off}		1	130	220	
Shutdown Propagation Delay	t_{sd}		-	135	220	
Delay Matching	MT		-	-	30	ns
Turn-On Rise Time	t _r		-	20	30	
Turn-Off Fall Time	t _f		-	15	25	
Static						
V_{BIAS} (V _{CC} , V _{BS} , V _{DD}) = 15V, C _L = 1000pF,	Γ _A = 25°C, \	V _{SS} =COM, unless oth	erwise s	specified.		
Logic "1"(IN) Input Voltage	VIH		9.5	1	-	
Logic "0" (IN) Input Voltage	V_{IL}		-	-	5	V
High Level Output Voltage, V _{BIAS} - V _O	Vон		-	-	1.4	
Low Level Output Voltage, Vo	V_{OL}		-	-	0.15	
Quiescent V _{DD} Supply Current	I _{QDD}		-	-	30	
Quiescent V _{CC} Supply Current	I _{QCC}		-	120	240	
Quiescent V _B Supply Current	I _{QBS}		-	75	150	^
Leakage Current From Vs(600V) to GND	I _{LK}		-	-	10	μA
Logic "1" Input Bias Current	I _{IN} +		-	20	40	
Logic "0" Input Bias Current	I _{IN} -		-	-	5	
V 0 1 10 4 0 T1 1 1 1	V _{BSU} +		7.5	8.4	9.7	
V _{BS} Supply UVLO Threshold	V _{BSU} -		7	8	9.4	
V _{CC} Supply UVLO Threshold	V _{CCU} +		7.5	8.4	9.6	V
	Vccu-		7	8	9.4	
Output High Short Circuit Pulsed Current	l _O +		-	2.5	-	
Output Low Short Circuit Pulsed Current	lo-		-	2.5	-	Α

TYPICAL PERFORMANCE CHARACTERISTICS

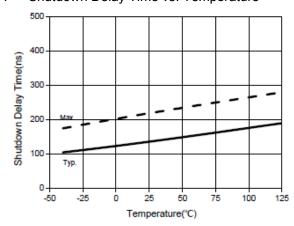

Turn-On Delay vs. Temperature 1.


Turn-On Delay Time vs. VDD Supply Voltage 3.

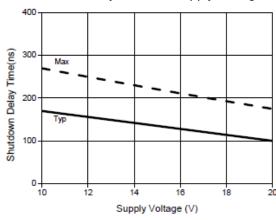

5. Turn-Off Delay Time vs. Supply Voltage

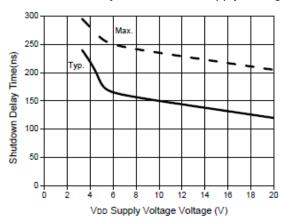

2. Turn-On Delay vs. Supply Voltage

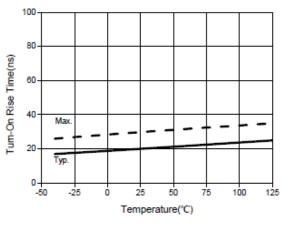
Turn-Off Delay Time vs. Temperature 4.

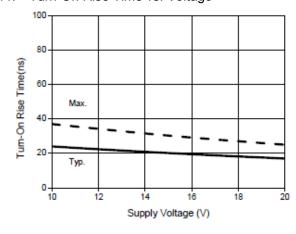


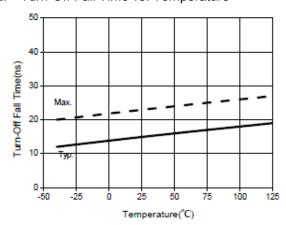
6. Turn-Off Delay Time vs. VDD Supply Voltage



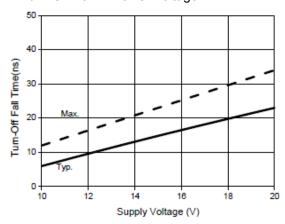

7. Shutdown Delay Time vs. Temperature


8. Shutdown Delay Time vs. Supply Voltage

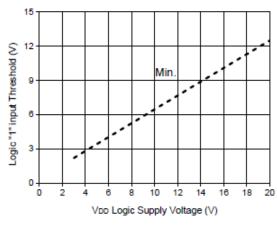

9. Shutdown Delay Time vs. V_{DD} Supply Voltage

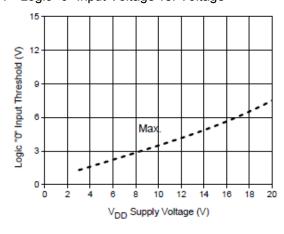

10. Turn-On Rise Time vs. Temperature

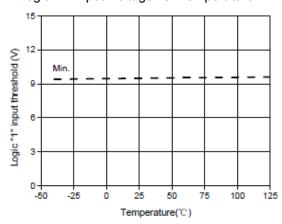
11. Turn-On Rise Time vs. Voltage

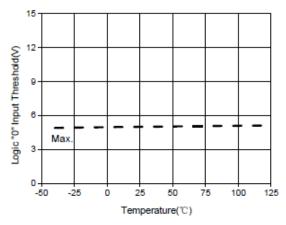


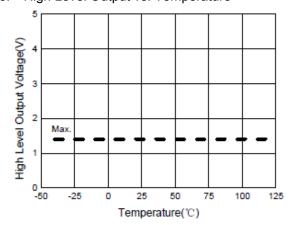
12. Turn-Off Fall Time vs. Temperature




13. Turn-Off Fall Time vs. Voltage


15. Logic "1" Input Voltage vs. Voltage

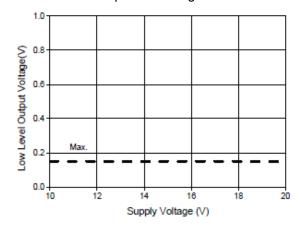

17. Logic "0" Input Voltage vs. Voltage

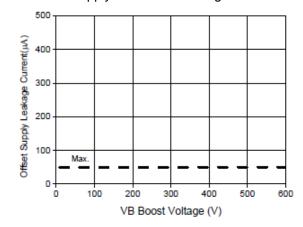

14. Logic "1" Input Voltage vs. Temperature

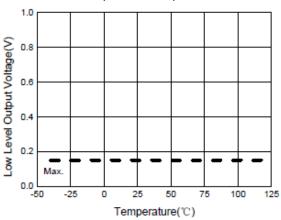
16. Logic "0" Input Voltage vs. Temperature

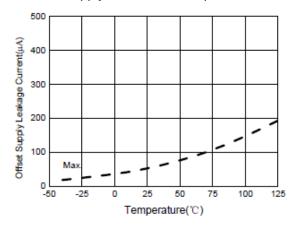


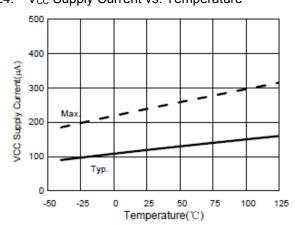
18. High Level Output vs. Temperature

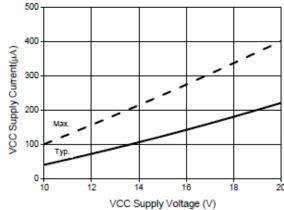


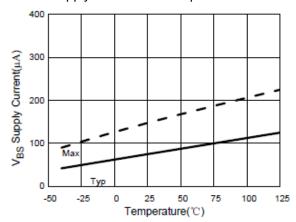

19. High Level Output vs. Voltage


21. Low Level Output vs. Voltage


23. Offset Supply Current vs. Voltage

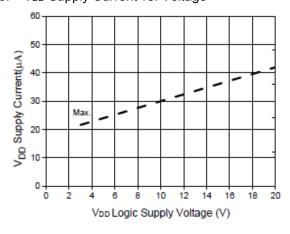

20. Low Level Output vs. Temperature

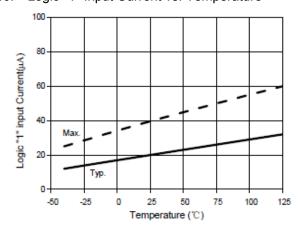

22. Offset Supply Current vs. Temperature

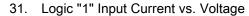

24. V_{CC} Supply Current vs. Temperature

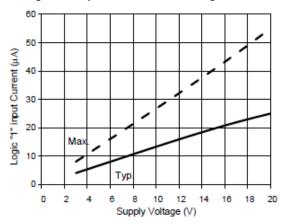
25. Vcc Supply Current vs. Voltage


26. V_{BS} Supply Current vs. Temperature

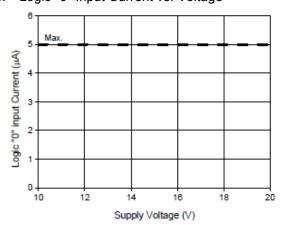

27. V_{BS} Supply Current vs. Voltage


28. V_{DD} Supply Current vs. Temperature

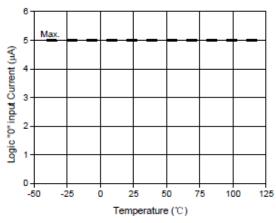

29. V_{DD} Supply Current vs. Voltage

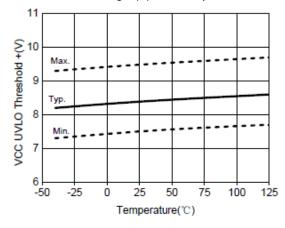


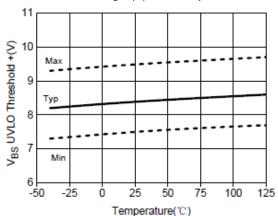
30. Logic "1" Input Current vs. Temperature



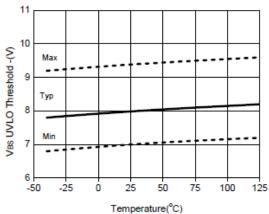



33. Logic "0" Input Current vs. Voltage

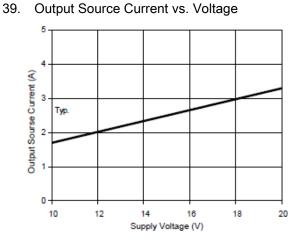

35. V_{CC} Under voltage (-) vs. Temperature

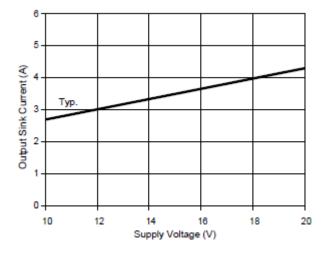

32. Logic "0" Input Current vs. Temperature

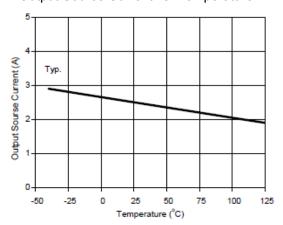
34. V_{CC} Under voltage (+) vs. Temperature

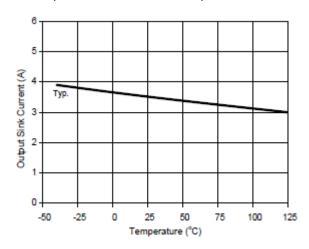


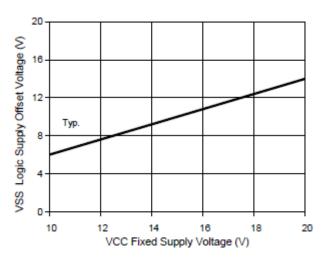
36. V_{BS} Under voltage (+) vs. Temperature

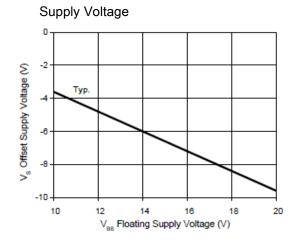


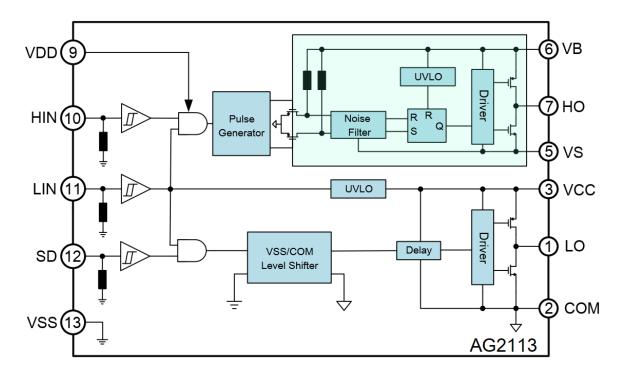

37. V_{BS} Under voltage (-) vs. Temperature

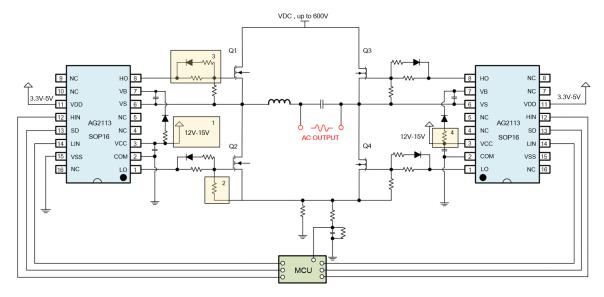

. . . .


41. Output Sink Current vs. Voltage


38. Output Source Current vs. Temperature


40. Output Sink Current vs. Temperature


42. Maximum Vss Positive Offset vs. Vcc Supply Voltage


43. Maximum Vss Positive Offset vs. Vcc

BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

- 1. V_{CC} supply voltage, for IGBTs, should be 15V, for MOSFETs, should be 12V-15V.
- 2. Pull down resistor between Gate and Source of power device, the value is 10k ohms.
- 3. Driver circuit, turn on and turn off channel should be independently, the resistors value according to power device.
- 4. The resistor between $V_{\text{CC}} \, \text{and bootstrap diode, to avoid } V_{\text{BS}} \, \text{dv/dt.}$

Function Timing Diagram

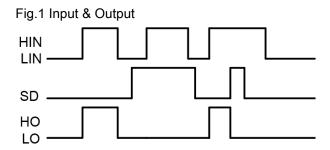
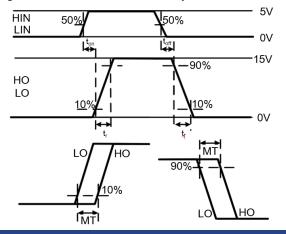
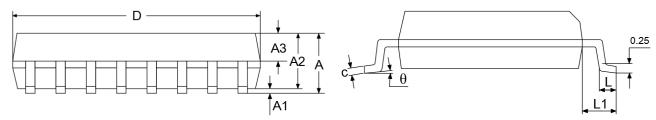
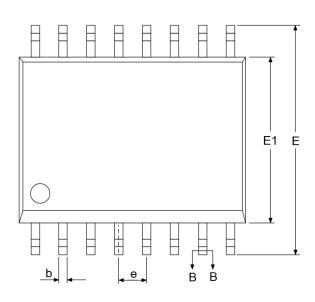



Fig.2 SD Delay Time

SD 50% 0V


HO LO 0V


Fig.3 Turn on and Turn off Delay

PACKAGE INFORMATION

Dimension in SOP16 (Unit: mm)

Symbol	Min.	Max.	
Α	-	2.65	
A1	0.10	0.30	
A2	2.25	2.35	
A3	0.97	1.07	
b	0.35	0.44	
b1	0.34	0.39	
С	0.25	0.31	
c1	0.24	0.26	
D	10.10	10.50	
Е	10.26	10.60	
E1	7.30	7.70	
е	1.27 BSC		
L	0.55	0.85	
L1	1.4 BSC		
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.