

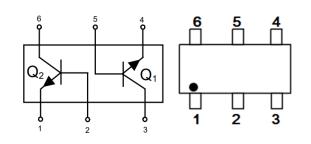
DESCRIPTION

The BC846_BC847_BC848 are Dual NPN general purpose transistors, available in SC-88 package.

www.ait-ic.com

- Low Current: 100mA (max)
- Low Voltage: 65V (max)
- Complementary PNP Type: BC856_BC857_BC858

Application: General-purpose switching and amplification.


MECHANICAL DATA

Case : SC-88 Terminals: Finish-Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 Polarity: NPN

ORDERING INFORMATION

Package Type	Part Number		
	BC846ADW		
SC-88	BC846BDW		
	BC847BDW		
	BC848BDW		
	BC847CDW		
	BC848CDW		
Note	SPQ: 3,000pcs/Reel		
AiT provides all RoHS Compliant Products			

PIN DESCRIPTION

Pin #	Description		
1,4	Emitter	TR1;TR2	
2,5	Base	TR1;TR2	
6,3	Collector	TR1;TR2	

ABSOLUTE MAXIMUM RATINGS

 T_A = 25°C, unless otherwise specified.

Parameter	Symbol	BC846	BC847	BC848	Unit
Collector-Emitter Voltage	Vceo	65	45	30	V
Collector-Base Voltage	Vсво	80	50	30	V
Emitter-Base Voltage	Vebo	6.0	6.0	5.0	V
Collector Current-Continuous	lc	100	100	100	mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Мах	Unit
Total Device Dissipation		380	mW
Per Device	P	250	mW
FR-5 Board, * T _A = 25°C	PD		
Derate above 25°C		3.0	mW/°C
Thermal Resistance, Junction to Ambient	R _{ØJA}	328	°C/W
Junction and Storage Temperature	T_J , T_stg	-55 to +150	°C

*FR-5 = 1.0×0.75×0.062 in

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, unless otherwise noted

Parameter		Symbol	Min.	Тур.	Max.	Unit	
OFF CHARACTERISTICS							
BC846 Series			65	-	-		
Collector-Emitter Breakdown Voltage		BC847 Series	V _{(BR)CEO}	45	-	-	V
(Ic = 10 mA)	BC848 Series			30	-	-	
Collector-Emitter Breakdown Voltage		BC846 Series	V _{(BR)CES}	80	-	-	V
		BC847 Series		50	-	-	
(I _C = 10 μA, V _{EB} = 0)		BC848 Series		30	-	-	
		BC846 Series		80	-	-	
Collector-Base Breakdown V	oltage	BC847 Series	V(BR)CBO	50	-	-	V
(I _c = 10 μA)		BC848 Series		30	-	-	
		BC846 Series		6.0	-	-	V
Emitter-Base Breakdown Vo	tage	BC847 Series	V _{(BR)EBO}	6.0	-	-	
(I _E = 1.0 μA)		BC848 Series		5.0	-	-	
Collector Cutoff Current (VCB	= 30 V)			-	-	15	nA
(V _{CB} = 30 V, T _A = 150°C)		I _{СВО}	-	-	5.0	μA	
ON CHARACTERISTICS							
DC Current Cain	BC846A			110	180	220	
DC Current Gain	BC846B, BC847B, BC848B		hfe	200	290	450	-
$(I_{C} = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC847C, BC	C848C		420	520	800	
Collector-Emitter Saturation Voltage (I_c =10 mA, I_B = 0.5 mA)		V _{CE(sat)}	-	-	0.25	V	
(Ic = 100 mA, I _B = 5.0 mA)			-	-	0.6		
Base-Emitter Saturation Volt	age (I _C = 10 m	nA, I _в = 0.5 mA)		-	0.7	-	
(I _C = 100 mA, I _B = 5.0 mA)		V _{BE(sat)}	-	0.9	-	V	
Base-Emitter Voltage (I_c = 2.0 mA, V_{CE} = 5.0 V)		V _{BE} (on)	580	660	700	mV	
(I _C = 10 mA, V _{CE} = 5.0 V)			-	-	770		
SMALL-SIGNAL CHARACTERISTICS							
Current–Gain — Bandwidth Product		f⊤	100			MHz	
$(I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ Vdc}, f = 100 \text{ MHz})$			100	-	-		
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)		Cobo	-	-	4.5	pF	
Noise Figure (Ic = 0.2 mA,	BC846A, BC846B					40	
V_{CE} = 5.0 V_{dc} , R S = 2.0 k Ω ,	BC847B, BC	C848B	NF	-	-	10	dB
f = 1.0 kHz, BW = 200 Hz)	BC847C, BC848C			-	-	4.0	

BC846ADW_847_848CDW GENERAL PURPOSE TRANSISTOR DUAL NPN

TYPICAL CHARACTERISTICS

Fig 1. Normalized DC Current Gain

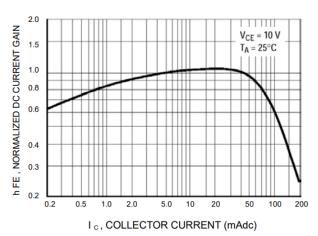


Fig 3. Collector Saturation Region

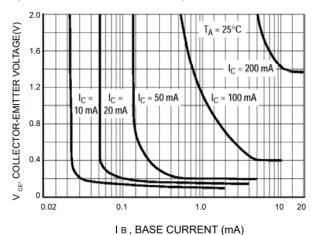


Fig 5. Capacitances

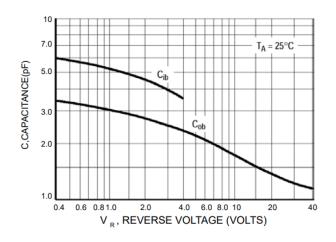


Fig 2. "Saturation" and "On" Voltages

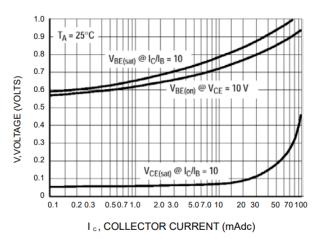
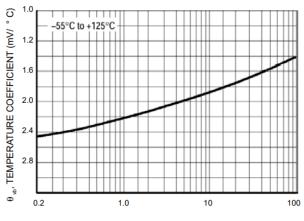
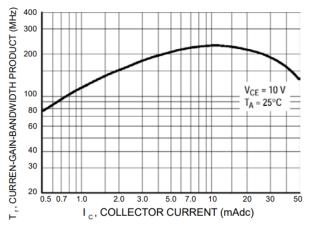
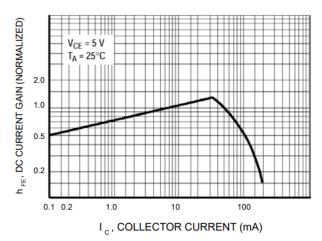
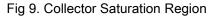




Fig 4. Base-Emitter Temperature Coefficient

I C , COLLECTOR CURRENT (mA)


Fig 6. Current-Gain - Bandwidth Product



BC846ADW_847_848CDW GENERAL PURPOSE TRANSISTOR DUAL NPN

Fig 7. DC Current Gain

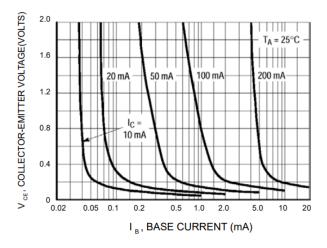


Fig 8. "On" Voltage

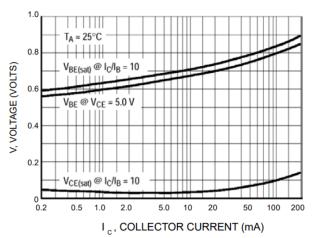
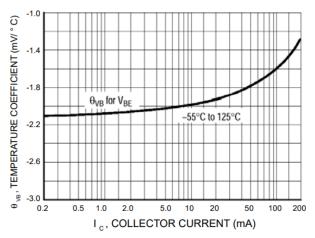
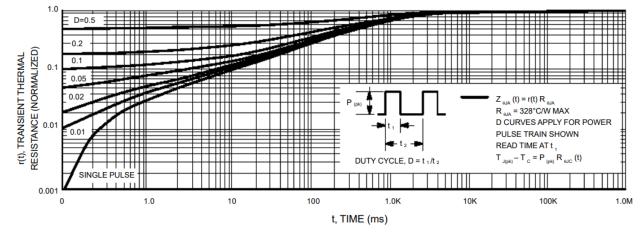




Fig 10. Base–Emitter Temperature Coefficient

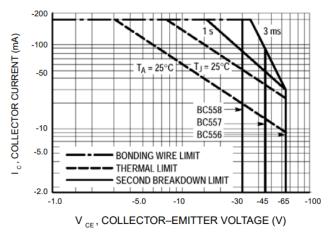
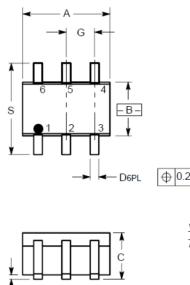
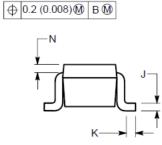


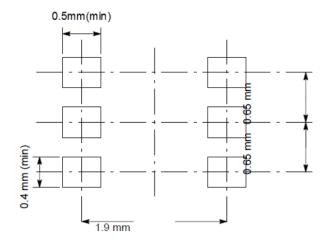
Fig 11. Thermal Response

Fig 12. Active Region Safe Operating Area


The safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Fig 12. is based upon $T_{J(pk)} = 150^{\circ}C$; T_C or T_A is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} < 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 12. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.




PACKAGE INFORMATION

Dimension in SC-88 (Unit: mm)

·H

Symbol	Min	Max	
А	1.800	2.200	
В	1.150	1.350	
С	0.800	1.100	
D	0.100	0.300	
G	0.65 BSC		
н	-	0.100	
J	0.100	0.250	
К	0.100	0.300	
N	0.200 REF		
S	2.000	2.200	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.