AiT Semiconductor Inc.

LOW DROPOUT VOLTAGE REGULATOR

500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

DESCRIPTION

The A6500B is designed for portable applications with demanding performance and space requirements.

www.ait-ic.com

The A6500B performance is optimized for batterypowered systems to deliver ultra-low noise and low quiescent current. Regulator ground current increases only slightly in dropout, further prolonging the battery life.

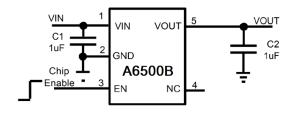
The A6500B also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in handheld wireless devices.

The A6500B consumes only 0.1µA current in shutdown mode and has fast turn-on time (Typical 100µs). The other features include ultra-low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio.

The A6500B is available in SOT-25, SC70-5 and DFN4 packages.

ORDERING INFORMATION

Package Type	Part Number		
SOT-25		A6500BE5R-XX	
SPQ: 3,000pcs/Reel	E5	A6500BE5VR-XX	
SC70-5	C5	A6500BC5R-XX	
SPQ: 3,000pcs/Reel	Co	A6500BC5VR-XX	
DFN4(1x1)	A6500BJ4R-XX		
SPQ: 5,000pcs/Reel	J4	A6500BJ4VR-XX	
	XX: Output Voltage		
Note	18=1.8V, 28=2.8V, 33=3.3V		
Note	V: Halogen free Package		
	R: Tape & Reel		
AiT provides all RoHS products			

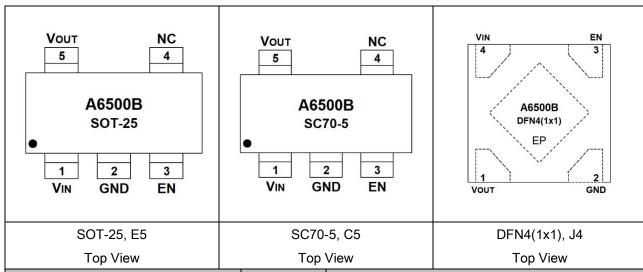

FEATURES

- Ultra-low Noise
- Ultra-Fast Transient Response
- High PSRR: -87dB @ 217Hz
 - -83dB @ 1KHz
 - -54dB @ 1MHz
- 0.1µA Standby Current When Shutdown
- Low Dropout: 240mV@500mA (Vout =2.8V)
- Wide Operating Voltage Ranges: 1.8V to 5.5V
- Current Limiting and Short Circuit Current Protection
- Thermal Shutdown Protection
- Only 1µF Output Capacitor Required for Stability
- Fast output discharge

APPLICATIONS

- Cellular and Smart Phones
- Cordless Telephones
- Camera and Machine Vision Modules
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- Hand-Held Instruments
- **PCMCIA Cards**
- Portable Information Appliances

TYPICAL APPLICATION



AiT Semiconductor Inc.

A6500B

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

PIN DESCRIPTION

	Pin#				
SOT-25	SC70-5	DFN4	Symbol	Function	
		(1x1)			
1	1	4	V _{IN}	Power Input Voltage.	
2	2	2	GND	Ground.	
3	3	3	EN	Chip Enable Pin, this pin has an internal pull-down	
<u> </u>	3	3	EIN	resistor.	
4	4		NC	No Connection.	
5	5	1	Vouт	Output Voltage.	
		Exposed	EP	The exposed pad should be connected to a large	
		Pad	_ CP	ground plane to maximize thermal performance.	

A6500B

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

ABSOLUTE MAXIMUM RATINGS (1)

V _{IN} , Input Supply Voltage	-0.3V ~ +6V
EN Pin Input Voltage	-0.3V ~ V _{IN}
Output Voltages	$-0.3V \sim V_{IN} + 0.3V$
Output Current	500mA
Maximum Junction Temperature	150℃
Operating Temperature Range (2)	-40°C ~ +85°C
Storage Temperature Range	-65°C ~ +125°C
Lead Temperature (Soldering, 10s)	300°C

Stresses above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
- (2) The A6500B is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization, and correlation with statistical process controls.

THERMAL CHARACTERISTICS

Parameter		Symbol	Max	Units
	SOT-25	θЈΑ	250	°C/W
Thomas to the second	SC70-5		333	
Thermal resistance*	SOT-25	0	130	°C/W
	SC70-5	θις	170	°C/W

^{*}Thermal Resistance is specified with approximately 1 square of 1 Oz copper.

 $V_{IN} = V_{OUT} + 1V$, EN= V_{IN} , $C_{IN} = C_{OUT} = 1\mu$ F, $T_A = 25^{\circ}$ C, unless otherwise noted.

ELECTRICAL CHARACTERISTICS (1)

Parame	eter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input Voltage		V _{IN}		1.8	-	5.5	V
Output Voltage Ac	curacy	ΔV_{OUT}	V _{IN} = V _{OUT} +1V, I _{OUT} =1mA	-2	-	+2	%
Current Limit		I _{LIM}	R_{LOAD} =1 Ω	500	-	-	mA
Short Circuit Curre	ent	I _{SHORT}	V _{OUT} =0V	-	200	1	mA
Quiescent Current	t	ΙQ	V _{EN} >1.2V, I _{OUT} =0mA	-	45	70	μΑ
			I _{OUT} =500mA, V _{OUT} =3.3V	-	220	320	
Daniel (A/Alfred			I _{ОUТ} =500mA, V _{ОUТ} =2.8V	-	240	360	
Dropout Voltage		V_{DROP}	I _{ОUТ} =500mA, V _{ОUТ} =1.8V	-	360	520	mV
			I _{ОUТ} =500mA, V _{ОUТ} =1.0V	-	700	1000	
Line Regulation (2)		ΔV_{LINE}	$V_{IN} = V_{OUT} + 1V \sim +5.5V$, $I_{OUT} = 1 \text{mA}$	-	0.03	0.17	%/V
Load Regulation (3	;)	ΔV_{LOAD}	1mA < I _{OUT} <300mA, V _{IN} = V _{OUT} +1V	-	0.002	-	%/mA
Output Voltage Temperature Coef	fficient (4)	ТСуоит	I _{OUT} =1mA	-	±60	ı	ppm/°C
Standby Current		I _{STBY}	V _{EN} =GND, Shutdown	-	0.1	1	μΑ
EN Input Bias Cur	rent	I _{IBSD}	V _{EN} =GND or V _{IN}	-	0.1	1	μΑ
EN Input	Logic Low	VIL	V_{IN} = +3V ~ +5.5V, Shutdown	-	-	0.4	V
Threshold	Logic High	V _{IH}	V_{IN} = +3V ~ +5.5V, Start up	1.2	-	ı	V
Output Noise Voltage		0.10	10 ~ 100kHz, C _{OUT} =1μF, I _{OUT} =100mA, V _{OUT} =2.8V		50	ı	11\/
		емо	10 ~ 100kHz, C _{OUT} =1μF, I _{OUT} =100mA, V _{OUT} =2.8V		38	-	- μV _{RMS}
	f=217Hz		I -40 A		-87	ı	
Power Supply	f=1KHz		I _{OUT} =10mA		-83	-	٩D
Rejection Ratio		P _{SRR}	V _{OUT} =1.8V		-72	-	dB
			V _{IN} =2.8V		-54	ı	
Thermal Shutdown Temperature	n	T _{SD}	Shutdown Temp increasing		170	1	°C
Thermal Shutdow	n Hysteresis	T _{SDHY}			25	-	°C

(1) Production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

(2) Line regulation is calculated by $\Delta V_{LINE} = \left\{ \frac{v_{OUT1} - v_{OUT2}}{\Delta V_{IN} X \, V_{OUT(normal)}} \right\} x_{100}$

Where V_{OUT1} is the output voltage when V_{IN} =5.5V, and V_{OUT2} is the output voltage when V_{IN} =4.3V, ΔV_{IN} =1.2V, V_{OUT} (normal) =3.3V.

(3) Load regulation is calculated by $\Delta V_{LOAD} = \left\{ \frac{V_{OUT_1} - V_{OUT_2}}{\Delta I_{OUT} X V_{OUT(normal)}} \right\} x_{100}$

Where V_{OUT1} is the output voltage when I_{OUT} =1mA, and V_{OUT2} is the output voltage when I_{OUT} =300mA, ΔI_{OUT} =299mA, V_{OUT} (normal) =2.8V.

(4) The temperature coefficient is calculated by $TC_{V_{OUT}} = \frac{\Delta V_{OUT}}{\Delta T.X.V_{OUT}}$

TYPICAL PERFORMANCE CHARACTERISTICS

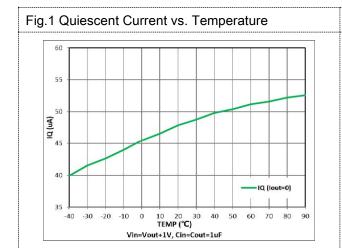


Fig.2 Dropout Voltage vs. Output

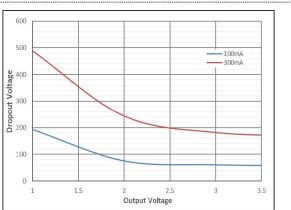


Fig.3 Output Dropout Voltage vs. Load Current (Vout=2.8V)

Fig.4 Dropout Voltage vs. Load Current (Vout=1.8V)

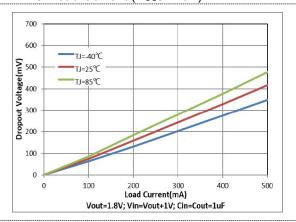


Fig.5 Power-Supply Ripple Rejection vs. Frequency (Vout =2.8V)

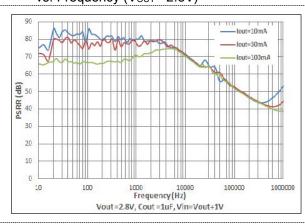
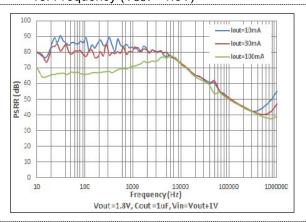
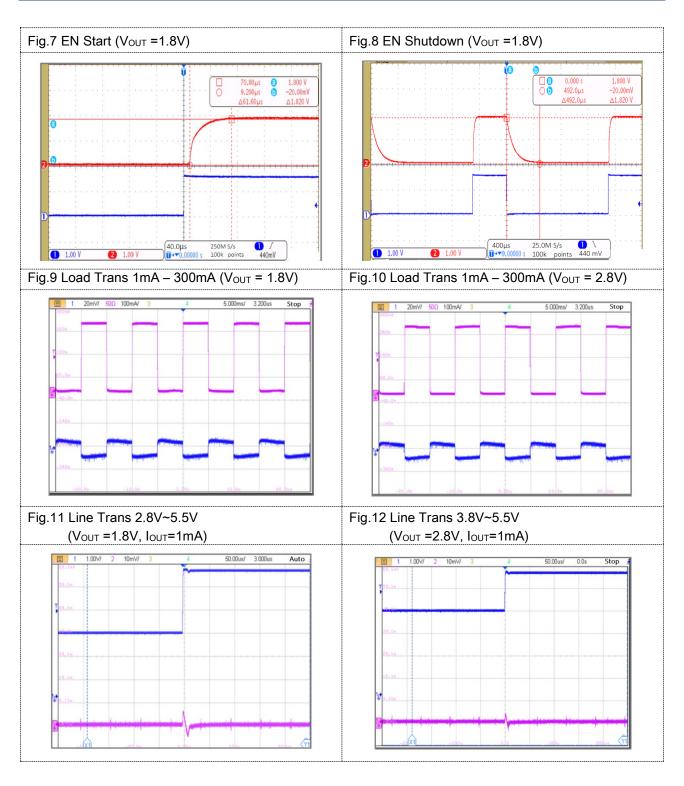



Fig.6 Power-Supply Ripple Rejection vs. Frequency (Vout =1.8V)

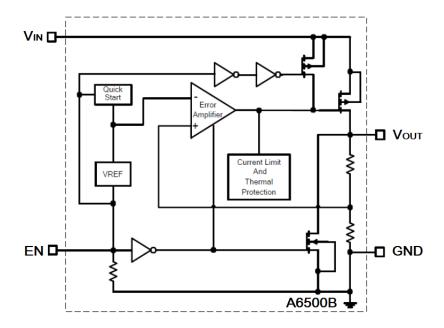


AiT Semiconductor Inc.

A6500E

www.ait-ic.com

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR



REV1.1

A6500E

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

BLOCK DIAGRAM

DETAILED INFORMATION

Applications Information

REV1.1

Like any low-dropout regulator, the external capacitors used with the A6500B must be carefully selected for regulator stability and performance. Using a capacitor whose value is > $1\mu F$ on the A6500B input and the amount of capacitance can be increased without limit. The input capacitor must be located a distance of not more than 0.5 inch from the input pin of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used for this capacitor. The capacitor with larger value and lower ESR (equivalent series resistance) provides better P_{SRR} and line-transient response. The output capacitor must meet both requirements for minimum amount of capacitance and ESR in all LDOs application. Generally, 1.0- μF X7R-type ceramic capacitors are recommended because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature. Output capacitor of larger capacitance can reduce noise and improve load transient response, stability, and P_{SRR} . The output capacitor should be located not more than 0.5 inch from the V_{OUT} pin of the A6500B and returned to a clean analog ground.

A6500E

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

Enable Function

The A6500B features an LDO regulator enable/disable function. To assure the LDO regulator will switch on; the EN turn on control level must be greater than 1.2 volts. The LDO regulator will go into the shutdown mode when the voltage on the EN pin falls below 0.4 volts. For to protect the system, the A6500B have a quick discharge function. If the enable function is not needed in a specific application, it may be tied to VIN to keep the LDO regulator in a continuously on state.

Thermal Considerations

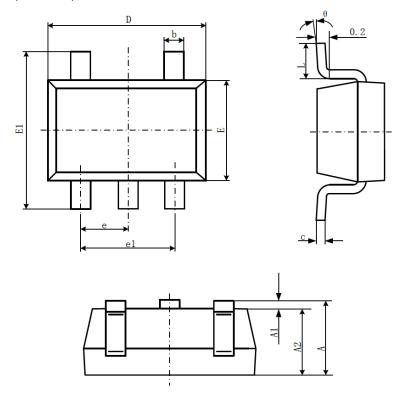
Thermal protection limits power dissipation in A6500B. When the operation junction temperature exceeds 170°C, the OTP circuit starts the thermal shutdown function turn the pass element off. The pass element turns on again after the junction temperature cools by 25°C.

For continue operation, do not exceed absolute maximum operation junction temperature 125°C. The power dissipation definition in device is:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

Where $T_{J(MAX)}$ is the maximum operation junction temperature 125°C, TA is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance. For recommended operating conditions specification of A6500B, where $T_{J(MAX)}$ is the maximum junction temperature of the die (125°C), and T_A is the maximum ambient temperature. The junction to ambient thermal resistance (θ_{JA} is layout dependent) for SOT-25 package is 250°C/W, on standard JEDEC 51-3 thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by following formula:

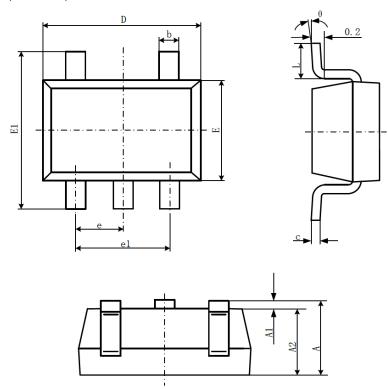
$$P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C)/250 = 400 \text{mW (SOT-25)}$$


Layout considerations

To improve ac performance such as P_{SRR} , output noise, and transient response, it is recommended that the PCB be designed with separate ground planes for V_{IN} and V_{OUT} , with each ground plane connected only at the GND pin of the device.

PACKAGE INFORMATION

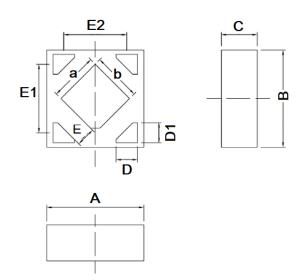
Dimension in SOT-25 (Unit: mm)

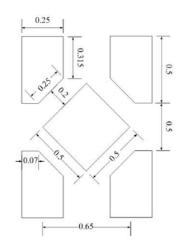


Symbol	Min.	Max.
Α	0.889	1.295
A1	0.000	0.152
A2	0.889	1.143
b	0.356	0.559
С	0.080	0.254
D	2.692	3.099
E	1.397	1.803
E1	2.591	2.997
е	0.838	1.041
e1	1.676	2.082
L	0.300	0.610
θ	0°	8°

A6500B

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR


Dimension in SC70-5 (Unit: mm)



Cumbal	MILLIMETERS			
Symbol	Min.	Max.		
Α	0.800	1.100		
A1	0.000	0.100		
A2	0.800	1.000		
b	0.150	0.300		
С	0.100	0.250		
D	1.850	2.200		
E	1.150	1.350		
E1	1.800	2.400		
е	0.650 BSC			
e1	1.300 BSC			
L	0.20 BSC			
θ	0° 8°			

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

Dimension in DFN4 (1x1) (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	MILLIMETERS			
Symbol	Min.	Max.		
Α	0.950	1.050		
а	0.440	0.540		
В	0.950	1.050		
b	0.440	0.540		
С	0.320	0.420		
D	0.170	0.270		
D1	0.175	0.275		
E	0.140	0.240		
E1	0.625	0.725		
E2	0.600	0.700		

A6500B

LOW DROPOUT VOLTAGE REGULATOR 500mA HIGH PSRR, ULTRA-LOW NOISE, ULTRA-FAST CMOS LDO REGULATOR

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.