AiT Semiconductor Inc.

DESCRIPTION

The AM2309A is available in SOT-23 package.

Application:

- Load Switch
- Switching Circuits
- High Speed Line Driver

FEATURE

- Low R_{DS (on)} @V_{GS}=-10V
- $150m\Omega R_{DS (on)} @V_{GS}=-10V$
- $200 \text{m}\Omega \text{ R}_{DS \text{ (on)}} @V_{GS} = -4.5 \text{V}$
- -5V Logic Level Control
- P Channel SOT-23 Package

PIN DESCRIPTION

ORDERING INFORMATION

Package Type	Part Number	
SOT-23	F3	AM2309AE3R
SPQ: 3,000pcs/Reel	E3	AM2309AE3VR
Note	V: Halogen free Package	
Note	R: Tape & Reel	
AiT provides all RoHS products		

Pin#	Symbol	Function
1	G	Gate
2	S	Source
3	D	Drain

ABSOLUTE MAXIMUM RATINGS

T_A = 25°C, unless otherwise stated.

1 A - 23 C, unless otherwise stated.		
Common Ratings		
V _{GS} , Gate-to-Source Voltage		±20V
V _{(BR)DSS} , Drain-Source Breakdown Voltage		-60V
T _J , Maximum Junction Temperature		150°C
T _{STG} , Storage Temperature Range		-50°C~+150°C
Mounted on Large Heat Sink		
I _{DM} , Pulse Drain Current Tested (1)	T _A =25°C	-8A
I _D , Continuous Drain Current	T _A =25°C	-2A
	T _A =70°C	-1.6A
P _D , Maximum Power Dissipation	T _A =25°C	1W
	T _A =70°C	W8.0
R _{θJA} , Thermal Resistance Junction-Ambient		125°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Pulse width limited by maximum allowable junction temperature

REV1.0 - JUN 2023 RELEASED - - 1

ELECTRICAL CHARACTERISTICS

www.ait-ic.com

 T_J = 25°C, unless otherwise stated.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Static Characteristics						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250μA	-60	-	-	V
Zero Gate Voltage Drain Current		V _{DS} =-60V, V _{GS} =0V, T _A =25°C	-	-	-1	
	I _{DSS}	V _{DS} =-60V, V _{GS} =0V, T _A =125°C	-	-	-100	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} ,I _D =-250μA	-1.0	-1.5	-2.5	V
Drain-Source	_	V _{GS} =-10V, I _D =-2A	-	150	200	mΩ
On-State Resistance (1)	R _{DS(ON)}	V _{GS} =-4.5V, ID=-1A	-	200	300	
Dynamic Characteristics						
Input Capacitance	Ciss		-	310	-	pF
Output Capacitance	Coss	V _{DS} =-30V, V _{GS} =0V, f=1MHz	-	22	-	
Reverse Transfer Capacitance	C _{rss}		-	15	-	
Total Gate Charge	Qg	V _{DS} =-30V, I _D =-2A V _{GS} =-10V	-	5.4	-	nC
Gate Source Charge	Qgs		-	1.1	-	
Gate Drain Charge	Q_{gd}		-	1.6	-	
Switching Characteristics						
Turn on Delay Time	t _{d (ON)}		-	41	-	
Turn on Rise Time	tr	I _D =-2A, V _{DD} =-30V, V _{GS} =-10V, R _G =3.3Ω	-	22	-	ns
Turn Off Delay Time	t _{d (OFF)}		-	25	-	
Turn Off Fall Time	t _f		-	32	-	
Source Drain Diode Characteristics						
Source Drain Current (Body Diode)	I _{SD}	T _A =25°C	-	-	-1.4	Α
Forward on Voltage (1)	V _{SD}	$T_J=25^{\circ}C,I_{SD}=-2A$, $V_{GS}=0V$	-	-0.84	-1.2	>

⁽¹⁾ Pulse test ; Pulse width≤300µs, duty cycle≤2%.

REV1.0 - 2 -- JUN 2023 RELEASED -

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Typical Output Characteristics

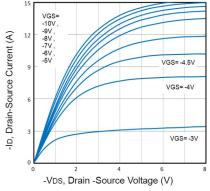


Fig3. Typical Transfer Characteristics

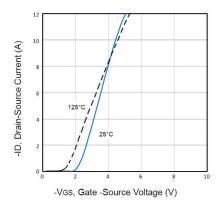


Fig5. Typical Source-Drain Diode Forward Voltage

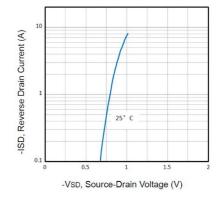


Fig 2. Normalized Threshold Voltage vs. Temperature

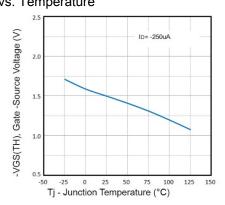


Fig4. Drain-Source Voltage vs. Gate-Source Voltage

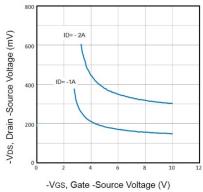
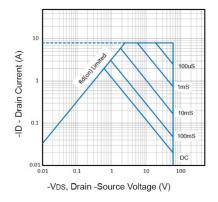



Fig6. Maximum Safe Operating Area

REV1.0 - JUN 2023 RELEASED -- 3 -

Fig7. Typical Capacitance vs. Drain-Source Voltage

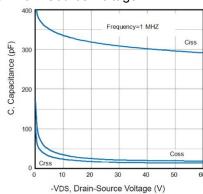


Fig8. Typical Gate Charge vs. Gate-Source Voltage

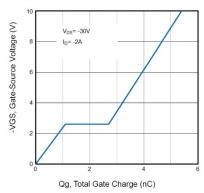
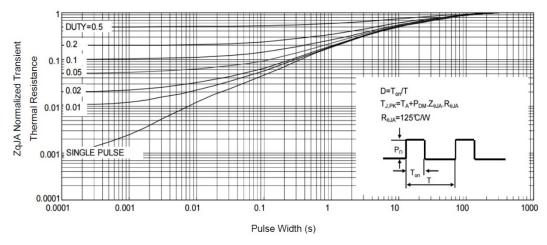
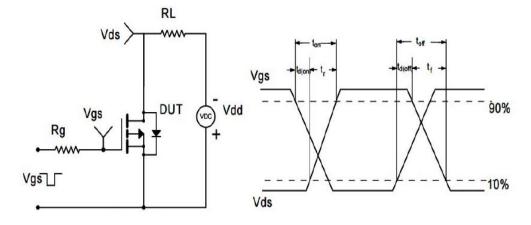
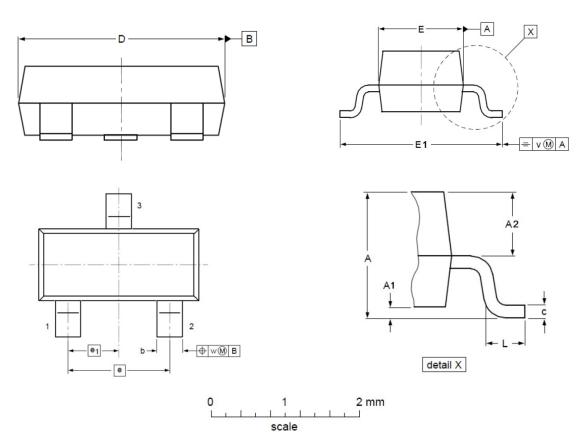


Fig9. Normalized Maximum Transient Thermal Impedance


Fig10. Switching Time Test Circuit and waveforms

REV1.0 - JUN 2023 RELEASED -

PACKAGE INFORMATION

Dimension in SOT-23 (Unit: mm)

Cumbal	MILLIMETERS			
Symbol	Min.	Max.		
Α	0.900	1.150		
A1	0.010	0.100		
A2	0.450	0.550		
b	0.300	0.500		
С	0.080	0.150		
D	2.800	3.000		
E	1.200	1.400		
E1	2.250	2.550		
е	0.950 (TYP)			
e1	1.900 (TYP)			
L	0.300	0.500		

REV1.0 - JUN 2023 RELEASED - - 5 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUN 2023 RELEASED - - 6 -