

DESCRIPTION

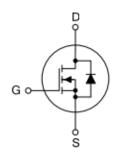
The AM60R036 is available in TO-247and TO-3PN Packages

www.ait-ic.com

BVDSS	RDSON	ID
650V	0.032Ω	75A

Application:

High Frequency Switching Mode Power Supply


ORDERING INFORMATION

Package Type	Part Number		
TO-247	TL3F	AM60R036TL3FU	
SPQ: 30pcs/Tube	1L3F	AM60R036TL3FVU	
TO-3PN	TX	AM60R036TXU	
SPQ: 30pcs/Tube	IX	AM60R036TXVU	
Note	U: Tube		
		ogen free Package	
AiT provides all RoHS products			

FEATURE

- Fast Switching
- Improved dv/dt capability

PIN DESCRIPTION

Pin#	Symbol	Function
1	G	Gate
2	D	Drain
3	S	Source

REV1.0 - MAY 2023 RELEASED -

650V, 75A N-CHANNEL SUPER JUNCTION MOSFET

ABSOLUTE MAXIMUM RATINGS

T_C = 25°C, unless otherwise specified.

16 - 25 C, unless otherwise specified.	
V _{DSS} , Drain-to-Source Voltage	600V
I _D , Continuous Drain Current	75A
I _D , Continuous Drain Current T _C = 100 °C	48A
I _{DM} , Pulsed Drain Current (1)	300A
V _{GS} , Gate-to-Source Voltage	±30V
E _{AS} , Single Pulse Avalanche Energy (2)	2200mJ
dv/dt, Peak Diode Recovery dv/dt (3)	15V/ns
P _D , Power Dissipation	480W
P _D , Derating Factor above 25°C	4.2W/°C
T _J , Operating Junction Temperature Range	150°C
T _{STG} , Storage Temperature Range	-55°C~+150°C
T _L , Maximum Temperature for Soldering	260°C
R _{0JA} , Junction-to-Ambient	62°C/W
Reuc, Junction-to-Case	0.24°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) Pulse width limited by maximum junction temperature
- (2) L=10mH, V_{Ds}=50V, Start T_J=25°C
- (3) $I_{SD} = 75A$, di/dt $\leq 100A$ /us, $V_{DD} \leq B_{VDS}$, Start $T_J = 25$ °C

REV1.0 - MAY 2023 RELEASED - - 2 -

ELECTRICAL CHARACTERISTICS

 $T_C = 25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
OFF Characteristics			•			
Drain to Source Breakdown Voltage	V_{DSS}	V _{GS} =0V, I _D =250μA	600	-	-	V
BV _{DSS} Temperature Coefficient	ΔBV _{DSS} ΔT _J	I _D =250μA Reference 25°C	-	0.58	-	V/°C
Drain to Source	less	V _{DS} =600V, V _{GS} =0V, T _J =25°C	-	-	1	μΑ
Leakage Current	IDSS	V _{DS} =480V, V _{GS} =0V, T _J =125°C	-	-	100	
Gate to Source Forward Leakage	I _{GSS(F)}	V _{GS} =+30V	-	-	100	nA
Gate to Source Reverse Leakage	I _{GSS(R)}	V _{GS} =-30V	-	-	-100	nA
ON Characteristics						
Drain-to-Source, On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =35A *	-	0.032	0.036	Ω
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D =250μA*	3.5	4.0	4.5	V
Dynamic Characteristics		•	•			
Gate Resistance	Rg	f=1.0MHz	-	0.98	-	Ω
Input Capacitance	Ciss	\\ -0\\ \\ -0\\	-	7900	-	pF
Output Capacitance	Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz	-	9200	-	
Reverse Transfer Capacitance	C_{rss}	I=1.UIVIITZ	-	900	-	
Switching Characteristics						
Turn-on Delay Time	t _{d (ON)}		-	30	-	ns
Rise Time	tr	I _D =45A, V _{DD} =400V,	-	28	-	
Turn-Off Delay Time	t _{d (OFF)}	V _{GS} =13V, R _G =1.8Ω	-	90	ı	
Fall Time	t _f		-	6	ı	
Total Gate Charge	Q_g	1 -704 \/ -400\/	-	160	-	
Gate to Source Charge	Q_{gs}	I _D =70A, V _{DD} =480V,	-	46.5	-	nC
Gate to Drain ("Miller") Charge	Q_{gd}	V _{GS} =10V	-	57	-	
Source-Drain Diode Characteristic	s					
Continuous Source Current (Body Diode)	ls	− T _c =25°C	-	-	75	А
Maximum Pulsed Current (Body Diode)	I _{SM}		-	-	225	А
Diode Forward Voltage	V _{SD}	I _S =75A , V _{GS} =0V*	-	-	1.2	V
Reverse Recovery Time	T _{rr}	I _S =45A, Tj=25°C	-	620	-	ns
Reverse Recovery Charge	Q _{rr}	dIF/dt =100A/μs V _{GS} =0V	-	11000	-	nC
		30 - 1	1	1		1

^{*}Pulse width tp≤300μs, δ≤2%

REV1.0 - MAY 2023 RELEASED - - 3 -

TYPICAL PERFORMANCE CHARACTERISTICS

www.ait-ic.com

Fig.1 Safe Operating Area



Fig.2 Power Dissipation

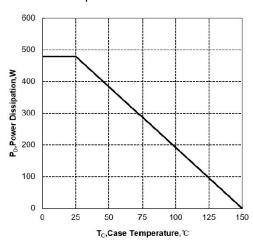


Fig.3 Max Thermal Impendence

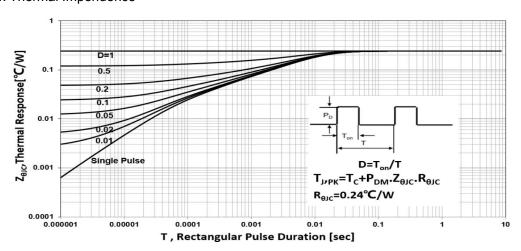


Fig.4 Typical Output Characteristics

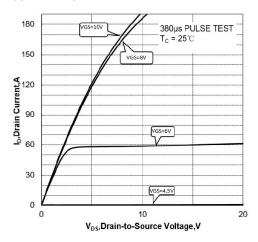
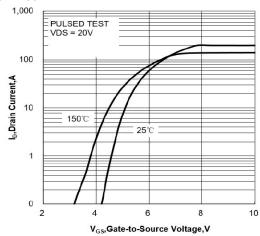



Fig.5 Typical Transfer Characteristics

REV1.0 - MAY 2023 RELEASED - -4-

650V, 75A N-CHANNEL SUPER JUNCTION MOSFET

Fig.6 Typical Drain to Source ON Resistance vs. Drain Current

www.ait-ic.com

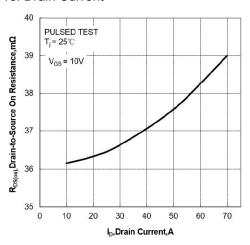


Fig.8 Typical Threshold Voltage vs. Junction Temperature

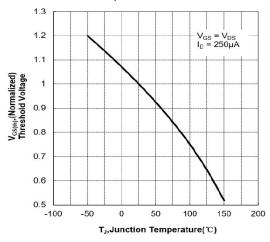


Fig.10 Typical Capacitance vs. Drain to Source Voltage

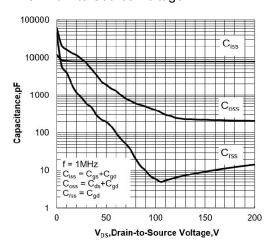


Fig.7 Typical Drain to Source on Resistance vs. Junction Temperature

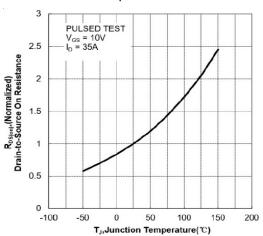


Fig.9 Typical Breakdown Voltage vs. Junction Temperature

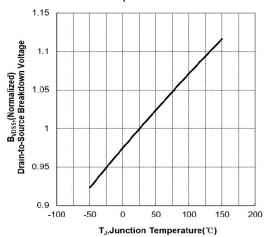
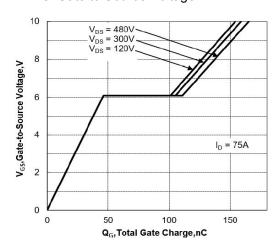



Fig.11 Typical Gate Charge vs. Gate to Source Voltage

REV1.0 - MAY 2023 RELEASED - - 5 -

Fig.12 Gate Charge Test Circuit

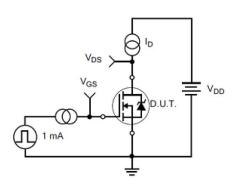


Fig.14 Resistive Switching Test Circuit

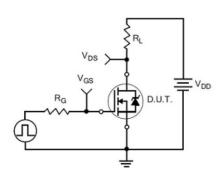


Fig.16 Diode Reverse Recovery Test Circuit

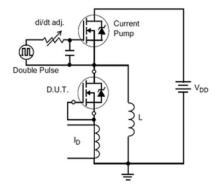


Fig.18 Unclamped Inductive Switching Test Circuit

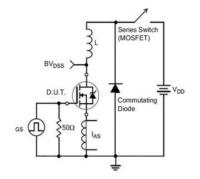


Fig.13 Gate Charge Waveforms

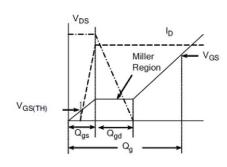


Fig.15 Resistive Switching Waveforms

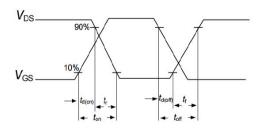


Fig.17 Diode Reverse Recovery Waveform

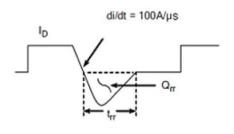
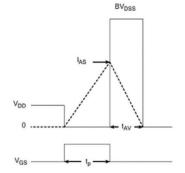
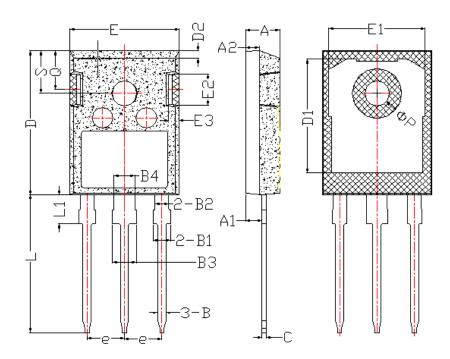



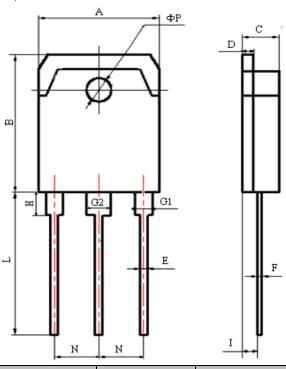
Fig.19 Unclamped Inductive Switching Waveform



- 6 -

REV1.0 - MAY 2023 RELEASED -

PACKAGE INFORMATION


Dimension in TO-247 (Unit: mm)

Symbol	Min.	Max.
Α	4.600	5.200
A1	2.200	2.600
В	0.900	1.400
B1	1.750	2.350
B2	1.750	2.150
B3	2.800	3.350
B4	2.800	3.150
С	0.500	0.700
D	20.600	21.300
D1	16.000	18.000
Е	15.500	16.100
E1	13.000	14.700
E2	3.800	5.300
E3	0.800	2.600
е	5.200	5.700
L	19.000	20.500
L1	3.900	4.600
ФР	2.500	3.700
Q	5.200	6.000
S	5.800	6.600

REV1.0 - MAY 2023 RELEASED - -7

Dimension in TO-3PN (Unit: mm)

Symbol	Min.	Max.
Α	15.000	16.000
В	19.200	20.600
С	4.600	5.000
D	1.400	1.600
E	0.900	1.100
F	0.500	0.700
G1	2.000	2.200
G2	3.000	3.200
Н	3.000	3.700
I	1.200	2.900
L	19.000	21.000
N	5.250	5.650
ФР	3.100	3.300

REV1.0 - MAY 2023 RELEASED - - 8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAY 2023 RELEASED - - 9 -