AM20P06

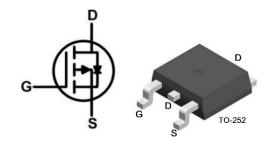
MOSFET -60V, 20A, P-CHANNEL, FAST SWITCHING MOSFETS

DESCRIPTION

The AM20P06 is available in TO-252 package.

BVDSS	RDSON	ID
-60V	70mΩ	20A

FEATURE


- Super Low Gate Charge
- Green Device Available
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench Technology

ORDERING INFORMATION

Package Type	Part Number	
TO-252	D	AM20P06DR
SPQ: 2,500pcs/Reel		AM20P06DVR
Note	V: Halogen free Package	
Note	R: Tape & Reel	

AiT provides all RoHS products

PIN DESCRIPTION

Pin#	Symbol	Function
1	G	Gate
2	D	Drain
3	S	Source
4	D	Drain

AM20P06

MOSFET -60V, 20A, P-CHANNEL, FAST SWITCHING MOSFETS

ABSOLUTE MAXIMUM RATINGS

V _{DS} , Drain-Source Voltage	-60V
V _{GS} , Gate-Source Voltage	± 20V
I _D @T _C =25°C, Continuous Drain Current, V _{GS} @ -10V ⁽¹⁾	20A
I _D @T _C =100°C, Continuous Drain Current, V _{GS} @ -10V ⁽¹⁾	-10A
I _D @T _A =25°C, Continuous Drain Current, V _{GS} @ -10V ⁽¹⁾	-4.5A
I _D @T _A =70°C, Continuous Drain Current, VGS @ -10V ⁽¹⁾	-4.0A
I _{DM} , Pulsed Drain Current (2)	-30A
EAS, Single Pulse Avalanche Energy (3)	18.1 mJ
I _{AS} , Avalanche Current	-13A
Pp@Tc=25°C, Total Power Dissipation ⁽⁴⁾	25W
P _D @T _A =25°C, Total Power Dissipation ⁽⁴⁾	2W
T _{STG} , Storage Temperature Range	-55°C~+150°C
T _J , Operating Junction Temperature Range	-55°C~+150°C
R _{0JA} , Thermal Resistance Junction-Ambient (1)	62°C/W
ReJC, Thermal Resistance Junction-Case (1)	5°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.
- (2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- (3) The EAS data shows Max. rating. The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.1mH, I_{AS} =-19A
- (4) The power dissipation is limited by 150°C junction temperature

ELECTRICAL CHARACTERISTICS

T_J = 25°C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	-60	1	-	٧
BV _{DSS} Temperature Coefficient	ΔBV _{DSS} /ΔT _J	Reference to 25°C ,	-	-0.023	-	V/°C
Static Drain-Source	$R_{DS(ON)}$ $V_{GS}=-10V, I_{D}=-10A$ $V_{GS}=-4.5V, I_{D}=-6A$	V _{GS} =-10V, I _D =-10A	-	70	85	
On-Resistance (2)		V _{GS} =-4.5V, I _D =-6A	-	88	90	mΩ
Gate Threshold Voltage	V _{GS (th)}	V V 1 050 A	-1.2	-	-2.5	V
V _{GS (th)} Temperature Coefficient	$\Delta V_{GS(th)}$	V _{GS} =V _{DS} , I _D =-250uA	-	4	-	mV/°C
Drain-Source Leakage Current		V _{DS} =-24V, V _{GS} =0V, T _J =25°C	-	-	-1	μΑ
	IDSS	V _{DS} =-24V, V _{GS} =0V,	-	-	-5	
Gate-Source Leakage Current	Igss	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
Forward Transconductance	gfs	V _{DS} =-5V, I _D =-15A	-	12	-	S
Total Gate Charge (-4.5V)	Q_g	457777	-	6.1	-	nC
Gate-Source Charge	Q _{gs}	V _{DS} =-15V, V _{GS} =-4.5V, I _D =-15A	-	3.1	-	
Gate-Drain Charge	Q_{gd}		-	1.8	-	
Turn-On Delay Time	T _{d(on)}		-	2.6	-	
Rise Time	Tr	V _{DD} =-15V, V _{GS} =-10V, R _G =3.3Ω, I _D =-15A	-	8.6	-	ns
Turn-Off Delay Time	$T_{d(off)}$		-	33.6	-	
Fall Time	T _f		-	6	-	
Input Capacitance	Ciss	45)/)/ 0)/	-	585	-	
Output Capacitance	Coss	V _{DS} =-15V, V _{GS} =0V, f=1MHz	-	100	-	pF
Reverse Transfer Capacitance	Crss		-	85	-	
Diode Characteristics						
Continuous Source Current (1)(3)	Is	V _G =V _D =0V, Force Current	-	-	-15	Α
Pulsed Source Current (2)(3)	lsм		-	-	-30	Α
Diode Forward Voltage (2)	V _{SD}	V _{GS} =0V , I _S =-1A , T _J =25°C	-	-	-1.2	V
Reverse Recovery Time	t _{rr}	I _F =-15A , dI/dt=100A/μs ,	-	6.1	-	nS
Reverse Recovery Charge	Qrr	T _J =25°C	-	1.4	-	nC

⁽¹⁾ The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

⁽²⁾ The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

⁽³⁾ The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation

TYPICAL PERFORMANCE CHARACTERISTICS

www.ait-ic.com

Fig 1. Typical Output Characteristics

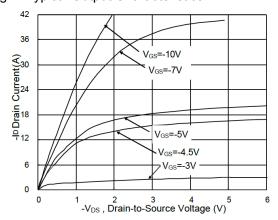


Fig3. Forward Characteristics of Reverse

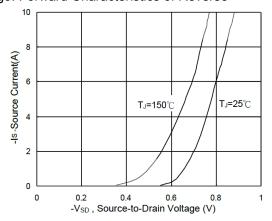


Fig5. Normalized $V_{GS\ (th)}$ vs. T_J

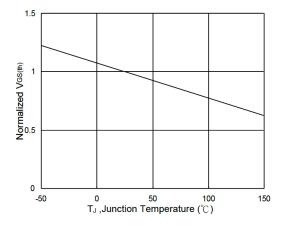


Fig 2. On-Resistance vs. Gate-Source

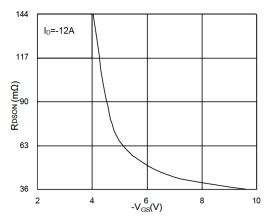


Fig4. Gate-Charge Characteristics

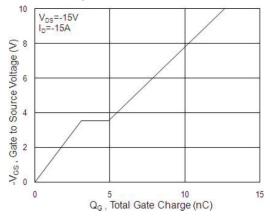


Fig6. Normalized RDSON vs. TJ

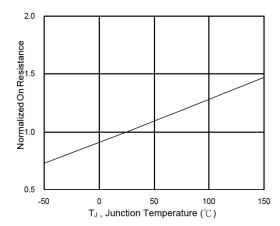
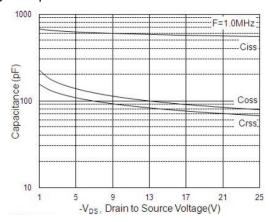



Fig 7. Capacitance

www.ait-ic.com

Fig 8. Safe Operating Area

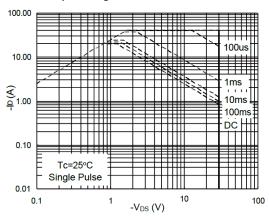


Fig9. Normalized Maximum Transient Thermal Impedance

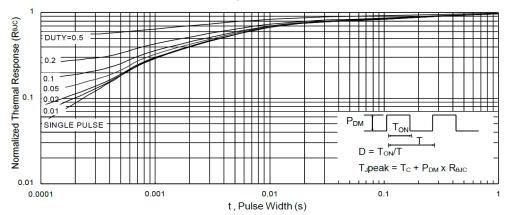
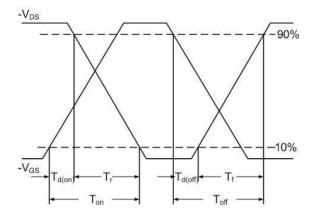
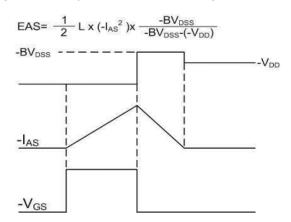
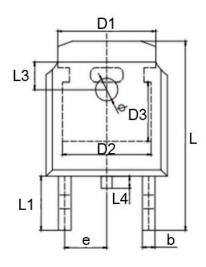
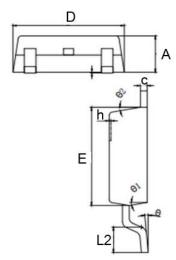


Fig10. Switching Time Waveform


Fig11. Unclamped Inductive Switching Waveform



PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Symbol	Min.	Max.		
Α	2.200	2.400		
A1	0.000	0.127		
b	0.640	0.740		
С	0.460	0.580		
D	6.500	6.700		
D1	5.334 REF			
D2	4.826 REF			
D3	3.166 REF			
E	6.000	6.200		
е	2.286 TYP			
h	0.000	0.200		
L	9.900	10.30		
L1	2.888 REF			
L2	1.400	1.700		
L3	1.600REF			
L4	0.600	1.000		
Ф	1.100	1.300		
θ	0°	8°		
θ1	9°			
θ2	9°			

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.