

AiT Semiconductor Inc.

DESCRIPTION

The A6310B is a highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The A6310B achieves high ripple rejection and low dropout and consists of a standard voltage source, an error correction, current limiter and a phase compensation circuit plus a driver transistor. The A6310B is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series.

www.ait-ic.com

The A6310B's current limiter feedback circuit also operates as a short protect for the output current limiter.

The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

The A6310B is available in PSOP8 package.

ORDERING INFORMATION

Package Type	Part Number	
PSOP8		A6310BMP8
SPQ: 4,000pcs/Reel	MPO	A6310BMP8VR
Noto	V: Halogen free Package	
Note	R: Tape & Reel	
AiT provides all RoHS products		

FEATURES

- Low on-resistance: 80mΩ(Typ.)
- Highly Accurate: ± 1.5%
- Dropout Voltage: 160mV @ 2A
- High Ripple Rejection: 50dB (1 kHz)
- Maximum Output Current : 3A
- Standby Current : less than 0.1µA
- Internal protector: current limiter
- Output Voltage Range: 0.8V to 5.0V

APPLICATION

- Laptop PC
- Industrial PC
- Graphic Card

TYPICAL APPLICATION

- 1. Input capacitor (C_IN) and Output capacitor (C_OUT): 10.0 μF or more , C_OUT must be less than 1000uF
- R4 and R5 are used as input resistors to limit the surge formation of hot-swap, and should be properly selected according to the current capability requirements of the actual application

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min.	Max.	Unit	
Input voltage	VCNTL	-0.3	6.5		
	Vin	1.2	6.5		
	VEN	-0.3	V _{CNTL} +0.3		
Output Voltage	Vout	-0.3	V _{IN} +0.3	V	
	POK	0.3	7		
	V _{FB}	-0.3	V _{CNTL} +0.3		
Power Dissipation	PD	2.0			
Thermal resistance	θյΑ	50			
Operating Ambient Temperature	T _{OPR}	-40	+125	*	
Storage Temperature	Tstg	-60	+150	C	

The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must

therefore not be exceeded under any conditions.

ELECTRICAL CHARACTERISTICS

VCNTL=5V, VIN=1.8V, VOUT=1.2V	$T_A=25^{\circ}C$ unless otherwise noted
-------------------------------	--

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Feedback Voltage	V _{FB}	I _{OUT} =30 mA	0.788	0.8	0.812	V
Dropout Voltage	Vdrop	V _{CNTL} =5V, V _{OUT} =1.2 I _{OUT} =2A	-	0.16	0.24	V
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{CNTL} \cdot V_{OUT}}$	3.0V ≤V _{CNTL} ≤5.5V Iouτ=10 mA	-	0.01	0.1	%/V
Load Regulation	ΔV_{FB}	1.0 mA ≤I _{OUT} ≤3A	-	1	2	mV
Output Voltage Temperature Characteristics	$\frac{\Delta V_{OUT}}{\Delta Ta \cdot V_{OUT}}$	V _{IN} =V _{OUT(S)} +1.0 V, I _{OUT} =10 mA -40°C ≤ Ta ≤85°C	-	±100	-	ppm/ ℃
Supply Current	I _{SS1}	$V_{IN}=V_{OUT(S)}$ +1.0 V , $I_{OUT}=0$	-	0.6	1.0	mA
Shutdown Current	ISTB		-	-	1	uA
FB Power OK Threshold	Vтнрок		-	93	-	%
POK hysteresis			-	6	-	%
Ripple-Rejection	PSRR	V _{IN} =V _{OUT(S)} +1.0 V , f=1 kHz Vrip=0.5 Vrms, I _{OUT} =50 mA	-	50	-	dB
Short-circuit Current	Ishort	V _{OUT} =0 V	-	200	-	mA
Output Noise	еn	Iout=30 mA,10HZ-100kHZ	-	50	-	uV _{RMS}
V _{CNTL} Undervoltage protection	Vuvlo		2.5	2.7	2.9	V
Hysteresis of undervoltage protection	Vuvlohys		-	0.3	-	V
VOUT Pull Low Resistance	-	V _{IN} = V _{CNTL} =5V,CE=0, I _{OUT} =10 mA	-	68	-	Ω
Overcurrent Protection Threshold Level	l _{lim}		2.5	3.2	-	A
Thermal Shutdown Temperature	T _{SD}	V _{CNTL} =CE=5.0V,V _{IN} =1.8V I _{OUT} =120mA	-	170	-	°C
Thermal Shutdown Hysteresis	TSDHYS	V _{CNTL} =CE=5.0V,VIN=1.8V I _{OUT} =120mA	-	50	-	°C
CE "High" Voltage	VCEH		1.2	-	-	V
CE "High" Current	ICEH	$V_{CNTL} = V_{IN} = V_{CE} = 4$	-	4	-	μA

TYPICAL PERFORMANCE CHARACTERISTICS

Fig.3 Enable/Disable Level vs Input Voltage

Fig.5 Quiescent Current vs Input Voltage

Fig.2 Output Voltage vs Temperature

Fig.7 On Resistance vs Temperature

Fig.9 Input Voltage Transient Response

 $(V_{\text{CNTL}}\text{=}\text{CE}\text{=}\text{3-5.0V}, V_{\text{IN}}\text{=}\text{1.8V}, C_{\text{IN}}\text{=}\text{C}_{\text{OUT}}\text{=}\text{10uF}, I_{\text{OUT}}\text{=}\text{800mA})$

Fig.8 Output Voltage vs Temperature

 $(V_{CNTL}=CE=5.0V, V_{IN}=1-3.0V, C_{IN}=C_{OUT}=10uF, I_{OUT}=100mA)$

Fig.10 Over Shoot

 $V_{\text{CNTL}} = 5.0V, V_{\text{IN}} = 1.8V, C_{\text{IN}} = C_{\text{OUT}} = 10 uF, I_{\text{OUT}} = 0A \text{ Hot-swap } V_{\text{CNTL}} \text{ and } V_{\text{IN}} \text{ respectively}$

A6310B CMOS LOW DROPOUT REGULATOR (LDO) 3A, ULTRALOW POWER CONSUMPTION

Fig.11 Load Transient Response

 $(V_{CNTL} = CE = 5.0V, V_{IN} = 1.8V C_{IN} = C_{OUT} = 10uF, I_{OUT} = 100mA-2A)$

Fig.13 VCNTL Turn ON

(V_{CNTL} =5V, V_{IN} = 3.3V, C_{OUT} = 1000uF, No Load)

Fig.12 V_{IN} Turn ON

(V_{CNTL} =5V, V_{IN} = 3.3V, C_{OUT} = 1000uF, No Load)

BLOCK DIAGRAM

DETAILED INFORMATION

Setting the Output Voltage

Through FB external resistance voltage dividing, the output voltage value can be calculated according to the following formula:

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R1}{R2}\right)$$

 V_{OUT} can choose the voltage from 0.8V to 5.0V and the center value of VFB is 0.8V. When the output voltage is 0.8V, R1 can use 0 Ω resistance or direct short circuit.

Setting the Input Capacitor and the Output Capacitor

Input and output capacitors are recommended to use more than 10μ F, which can ensure the stability of the system, and C_{OUT} must be less than 1000μ F.

Setting the Feedback Capacitor -C1

It is suggested that the feedback capacitor C1 be used, which can improve the transient load desirability and system stability.

Setting the Current limiting resistors- R4, R5

R4 and R5 are current limiting resistors. It is recommended to add R4 and R5 resistors when the input voltage is high. Where R4 is usually recommended 0-2 ohms. Since R5 is a power path, R5 needs to be set according to the maximum load requirement. It is generally recommended that the ripple introduced by R5 should not exceed 0.5V.

PCB Layout

In order to get better use effect, the main points for attention of PCB layout are as follows:

1. The input and output capacitors are as close as possible to the chip pins.

2. The wiring of V_{IN} and V_{OUT} should be as thick as possible to reduce the wiring resistance and improve the load performance.

3. The route from R2 to GND uses a dedicated channel to prevent parasitic resistance from introducing into the change path, which results in incorrect feedback ratio and output error.

Input Voltage

V_{IN} and V_{CNTL} at the same potential is not recommended because this application will affect the driving of A6310B

D

PACKAGE INFORMATION

Dimension in PSOP8 (Unit: mm)

	Dimensions In Millimeters		
Symbol	Min	Max	
А	1.350	1.750	
A1	0.050	0.150	
A2	1.350	1.550	
b	0.330	0.510	
С	0.170	0.250	
D	4.700	5.100	
D1	3.202	3.420	
E	3.800	4.000	
E1	5.800	6.200	
E2	2.313	2.513	
е	1.270(BSC)		
L	0.400	1.270	
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.