DESCRIPTION

The AL138 is designed to be used in highperformance memory-decoding or data-routing applications requiring very short propagation delay times.

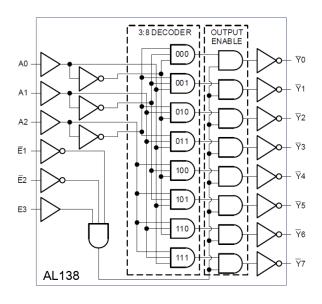
The AL138 is a3-to-8 decoders/demultiplexers, which designed for 2V to $5.5V\ V_{CC}$ operation.

The AL138 is consist of three enable inputs (E3, $\overline{E}2$ and $\overline{E}1$), three binary weighted address inputs (A0, A1 and A2) and eight outputs ($\overline{Y}0$ to $\overline{Y}7$). Among all enable inputs, one is active high output enable (E3) and two are active low output enables ($\overline{E}2$ and $\overline{E}1$). When the outputs are gated by any of the strobe inputs, they are all forced into the high state. When the outputs are not disabled by the strobe inputs, only the selected output is low while all others are high.

The AL138 is available in SOP16 and TSSOP16 packages.

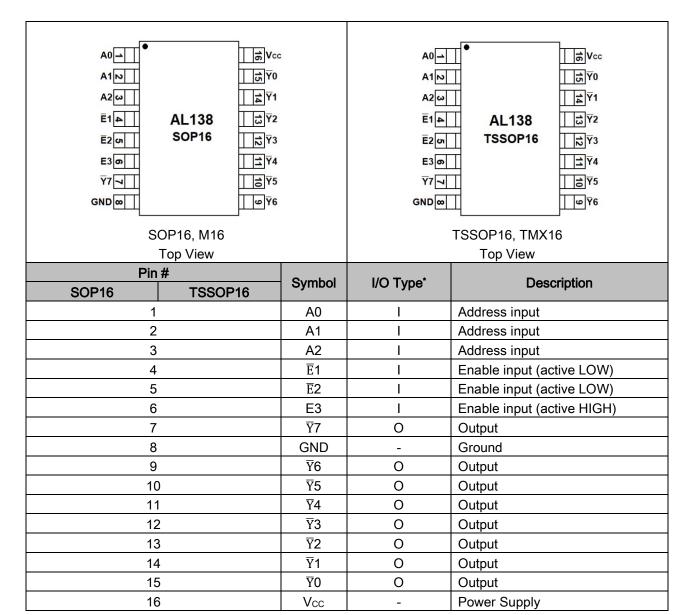
ORDERING INFORMATION

Package Type	Part Number				
SOP16	M16	AL138M16R			
SPQ: 4,000pcs/Reel	IVITO	AL138M16VR			
TSSOP16	TMV16	AL138TMX16R			
SPQ: 4,000pcs/Reel	TMX16	AL138TMX16VR			
Note	V: Halogen Free Package				
note	R: Tape & Reel				
AiT provides all RoHS products					


FEATURES

- Operating Voltage Range: 2V to 5.5V
- Low Power Consumption: 160µA (Max.)
- I/O Port or Memory Selector
- Three Enable Inputs to Simplify Cascading
- Balanced Propagation Delay and Transition
 Times
- Operating Temperature Range:
 -40°C to +125°C

APPLICATION


- LED Displays
- Servers
- White Goods
- Power Infrastructure
- Building Automation
- Factory Automation

FUNCTIONAL DIAGRAM

REV1.0 - DEC 2023 RELEASEDD - -1-

PIN DESCIPTION

^{*}I=Input, O=Output.

REV1.0 - DEC 2023 RELEASEDD - - 2 -

FUNCTION TABLE

Enable Inputs			uts Address Inputs			Outputs							
E3	E2	E 1	A2	A1	A0	<u></u> Y 0	<u>¥</u> 1	<u>¥</u> 2	<u>¥</u> 3	<u>¥</u> 4	<u>¥</u> 5	<u>¥</u> 6	<u>¥</u> 7
Х	Н	Х	X	X	Х	Н	Н	Н	Н	Η	Η	Η	Н
Х	Х	Н	X	X	Х	Н	Н	Н	Н	Η	Η	Η	Н
L	Х	Х	X	X	Х	Н	Н	Н	Н	Η	Ι	Ι	Н
Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H: High Voltage Level

L: Low Voltage Level

X: Don't care

REV1.0 - DEC 2023 RELEASEDD - - 3 -

AL138
LOGIC
3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) (1)

V _{CC} , Supply Voltage Range	-0.5V~+7V	
I _к , Input Clamp Diode Current	For $V_1 < 0.5V$ or $V_1 > V_{CC} + 0.5V$	±20mA
Іок, Output Clamp Diode Current	For V _O < -0.5V or V _O > V _{CC} +0.5V	±20mA
Io, Output Source or Sink Current	FV > 0.5VV 4.V +0.5V	105 ··· A
Per Output Pin	For $V_0 > -0.5V$ or $V_0 < V_{CC} + 0.5V$	±25mA
Continuous Current Through Vcc or C	GND	±50mA
I _{GND} , Ground Current		-70mA
O Bookege Thermal Impedance (2)	SOP16	150°C/W
θ _{JA} , Package Thermal Impedance ⁽²⁾	TSSOP16	45°C/W
T _J , Junction Temperature (3)		-65°C ~ +150°C
T _{STG} , Storage Temperature		-65°C ~ +150°C
Lead Temperature (Soldering 10s) (S	SOIC - Lead Tips Only) 300 °C	+300°C
ESD Ratings		
	Human-Body Model (HBM),	±2000V
	per ANSI/ESDA/JEDEC JS-001(4)	±2000V
V _(ESD) , Electrostatic Discharge	Charged-Device Model (CDM),	±1000V
	per ANSI/ESDA/JEDEC JS-002(5)	±1000V
	Machine Model (MM)	±200V

Stresses above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The package thermal impedance is calculated in accordance with JESD-51.
- (3) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is PD = $(T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.
- (4) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
- (5) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

REV1.0 - DEC 2023 RELEASEDD - -4

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc		2.0	-	5.5	٧
Input Voltage	Vı		0	-	Vcc	V
Output Voltage	Vo		0	-	Vcc	V
		V _{CC} =2.0V	-	-	1000	
Input Rise and Fall Time	t _t	V _{CC} =4.5V	-	-	500	ns
		V _{CC} =5.5V	-	-	400	
Operating Temperature	T _A		-40	-	125	Ç

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

SWITCHING CHARACTERISTICS

Input $t_t = 6ns$.

Parameter			Operating free-air temperature (T _A)										
		Test	Vcc	25°C			-40°C to 85°C			-40°C to 125°C			Unit
		Conditions		Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Min. ⁽¹⁾	Typ. ⁽²⁾	Max. ⁽¹⁾	Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	
	Address to		2.0	-	-	51	-	-	54	-	-	55	
		C _L = 50pF	4.5	-	11	16	-	-	18	-	-	19	ns
4.	output		5.5	-	ı	14	-	-	16	-	-	17	
t _{pd}	Strobe $\overline{E}1$, $\overline{E}2$,		2.0	-	-	46	-	-	49	-	-	50	
	E3 to output	C _L = 50pF	4.5	-	-	14	-	-	15	-	-	16	ns
	AL138		5.5	-	-	12	-	-	13	-	-	14	
	Outrot		2.0	-	-	39	-	-	41	-	-	46	
tt	Output	C _L = 50pF	4.5	-	-	14	-	-	16	-	-	17	ns
	Transition Time		5.5	-	-	12	-	-	13	-	-	15	
СРД	Power Dissipation Capacitance (3)	C _L = 15pF	5.0	-	67	-	-	-	-	-	-	-	pF
Ci	Input Capacitance	-	ı	-	-	10	-	-	10	-	_	10	рF

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

REV1.0 - DEC 2023 RELEASEDD - - 5 -

⁽¹⁾ This parameter is ensured by design and/or characterization and is not tested in production.

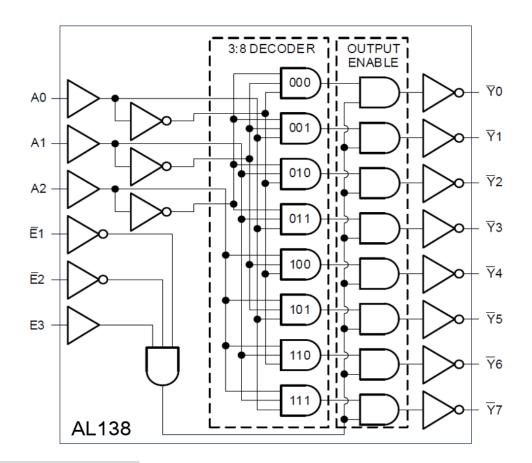
⁽²⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

⁽³⁾ CPD is used to determine the dynamic power consumption, per gate.

ELECTRICAL CHARACTERISTICS

	_ ,		Operating free-air temperature (T _A)									
Parameter	Test	Vcc	25°C			-40°C to 85°C			-40°C to 125°C			Unit
	Conditions (3)		Min. (1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Min.(1)	Typ. ⁽²⁾	Max. (1)	Min.(1)	Typ. ⁽²⁾	Max. ⁽¹⁾	
		2.0	1.50	-	-	1.50	-	-	1.50	-	-	
V _{IH}	-	4.5	3.15	-	-	3.15	-	-	3.15	-	-	V
		5.5	3.85	-	-	3.85	-	-	3.85	-	-	
		2.0	-	1	0.50	ı	ı	0.50	ı	ı	0.50	
VIL	-	4.5	-	ı	1.35	ı	1	1.35	ı	ı	1.35	V
		5.5	ı	1	1.65	ı	ı	1.65	ı	ı	1.65	
	I _{OH} = -20μA	2.0	1.90	-	-	1.90	-	-	1.90	-	-	- - - -
	I _{OH} = -20μA	4.5	4.40	-	-	4.40	-	-	4.40	-	-	
Vон	I _{OH} = -20μA	5.5	5.40	-	-	5.40	-	-	5.40	-	-	
	$I_{OH} = -4mA$	4.5	3.98	-	-	3.84	-	-	3.70	-	-	
	I _{OH} = -5.2mA	5.5	4.95	-	-	4.81	-	-	4.67	-	-	
	I _{OL} = 20μA	2.0	-	-	0.10	-	-	0.10	-	-	0.10	
	I _{OL} = 20μA	4.5	-	-	0.10	-	-	0.10	-	-	0.10	
V _{OL}	I _{OL} = 20μA	5.5	-	-	0.10	-	-	0.10	-	-	0.10	V
	I _{OL} = 4mA	4.5	-	ı	0.26	-	-	0.33	-	ı	0.40	
	I _{OL} = 5.2mA	5.5	-	ı	0.26	ı	ı	0.33	ı	ı	0.40	
lı	$V_I = V_{CC}$ or	5.5	-	ı	±0.1	ı	ı	±1.0	ı	ı	±1.0	μΑ
Icc	GND	5.5	-	1	8.00	ı	-	80	-	-	160	μΑ

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.


REV1.0 - DEC 2023 RELEASEDD - - 6 -

⁽¹⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.

⁽²⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

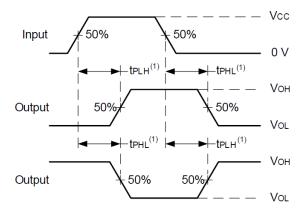
⁽³⁾ $V_I = V_{IH}$ or V_{IL} , unless otherwise noted.

BLOCK DIAGRAM

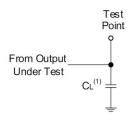
DETAILED INFORMATION

The AL138 device is 3-to-8 decoders/demultiplexers. The three address input pins, A0, A1, and A2, select which output is active. The selected output is pulled LOW, while the remaining outputs are all HIGH. The conditions at the binary weighted inputs at the three enable inputs select one of eight output lines. The three enable input pins, E3, $\overline{E2}$ and $\overline{E1}$. One active high enable and two active low enable pins are available, and any enable pin can be deactivated to force all outputs high. All three enable pins must be active for the output to be enabled.

Power Supply Recommendations

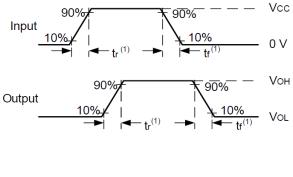

The power supply pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ capacitor is recommended and if there are multiple V_{CC} terminals then 0.01 μ or 0.022 μ capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1 μ and 1 μ capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible.

REV1.0 - DEC 2023 RELEASEDD - - 7 -


Parameter Measurement Information

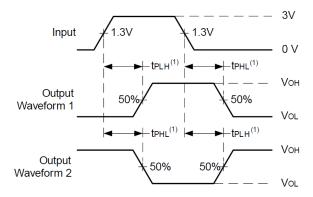
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_0 = 50 Ω , t_t < 6 ns. For clock inputs, f_{max} is measured when the input duty cycle is 50%. The outputs are measured one at a time with one input transition per measurement.

Fig 2. Voltage Waveforms, Propagation Delays for Standard CMOS Inputs


The greater between t_{PLH} and t_{PHL} is the same as t_{pd}

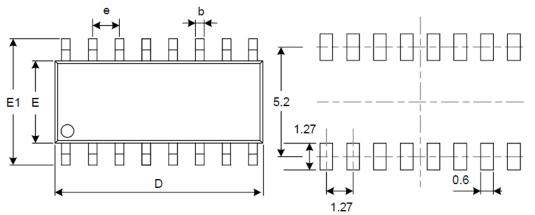
C∟ includes probe and test-fixture capacitance.

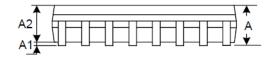
Fig 1. Load Circuit for Push-Pull Output


Fig 3. Voltage Waveforms, Input and Output
Transition Times for Standard CMOS Inputs

The greater between t_r and t_f is the same as t_t

Fig 4. Voltage Waveforms, Propagation Delays for TTL-Compatible Inputs

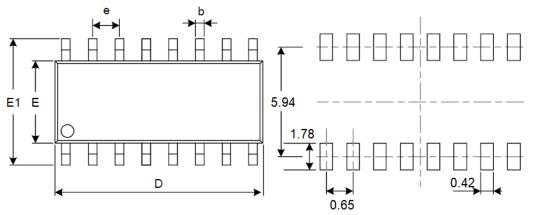

The greater between t_{PLH} and t_{PHL} is the same as t_{pd}

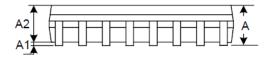

REV1.0 - DEC 2023 RELEASEDD - - 8 -

PACKAGE INFORMATION

Dimension in SOP16 (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)




Symbol	Min.	Max.
Α	1.350	1.750
A1	0.100	0.250
A2	1.250	1.500
b	0.330	0.510
С	0.170	0.250
D	9.800	10.200
Е	3.800	4.000
E1	5.800	6.200
е	1.270	BSC
L	0.400	1.270
θ	0°	8°

REV1.0 - DEC 2023 RELEASEDD - - 9 -

Dimension in TSSOP16 Package (Unit: mm)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Min.	Max.
Α	-	1.200
A1	0.050	0.150
A2	0.800	1.050
b	0.190	0.300
С	0.090	0.200
D	4.860	5.100
Е	4.300	4.500
E1	6.200	6.600
е	0.650	BSC
L	0.500	0.700
θ	0°	7°

REV1.0 - DEC 2023 RELEASEDD - -10 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or serve property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - DEC 2023 RELEASEDD - - 11 -