

DESCRIPTION

The AM65R041 is available in TO-247 package.

BVDSS	RDSON	ID
700V	0.035Ω	75A

FEATURE

- Fast Switching
- 100% avalanche tested
- Improved dv/dt capability

PIN DESCRIPTION

High Frequency Switching Mode Power Supply

ORDERING INFORMATION

Package Type	Part Number		
TO-247	TL3F	AM65R041TL3FU	
SPQ: 30pcs/Tube	ILSF	AM65R041TL3FVU	
Nete	U: Tube		
Note	V: Halogen free Package		
AiT provides all RoHS products			

Go

Pin#	Symbol	Function
1	G	Gate
2	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

Tc = 25°C, unless otherwise specified.	
V _{DSS} , Drain-to-Source Voltage	650V
I _D , Continuous Drain Current	75A
I _D , Continuous Drain Current T _C = 100 $^{\circ}$ C	48A
IDM, Pulsed Drain Current ⁽¹⁾	300A
V _{GS} , Gate-to-Source Voltage	±30V
E _{AS} , Single Pulse Avalanche Energy ⁽²⁾	3000mJ
dv/dt, Peak Diode Recovery dv/dt (3)	15V/ns
P _D , Power Dissipation	480W
P _D , Derating Factor above 25°C	4.8W/°C
T _J , Operating Junction Temperature Range	150°C
T _{STG} , Storage Temperature Range	-55°C~+150°C
T _L , Maximum Temperature for Soldering	260°C
R _{0JA} , Junction-to-Ambient	62°C/W
R _{0JC} , Junction-to-Case	0.21°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

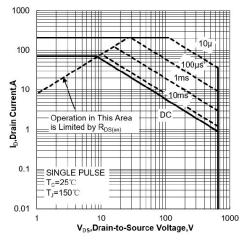
(1) Pulse width limited by maximum junction temperature

(2) L=10mH, V_{Ds}=50V, Start T_J=25°C

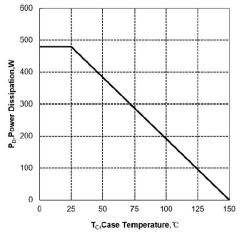
(3) $I_{SD} = 75A$, di/dt $\leq 100A$ /us, $V_{DD} \leq B_{VDS}$, Start T_J=25°C

ELECTRICAL CHARACTERISTICS

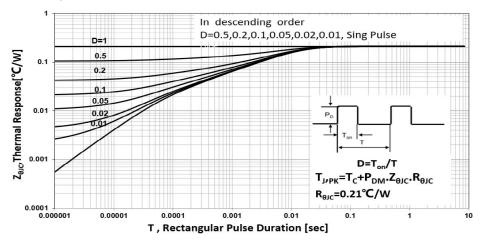
 T_C = 25°C, unless otherwise specified.

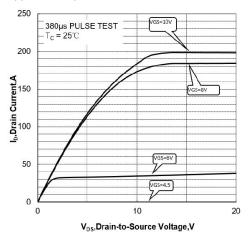

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
OFF Characteristics						
Drain to Source Breakdown Voltage	V _{DSS}	V _{GS} =0V, I _D =250µA	650	-	-	V
BV _{DSS} Temperature Coefficient	ΔBV _{DSS} ΔTj	I⊳=250µA Reference 25°C	-	0.6	-	V/°C
Drain to Source	Inco	V _{DS} =650V, V _{GS} =0V, T _J =25°C	-	-	1	μΑ
Leakage Current	1000	V _{DS} =520V, V _{GS} =0V, T _J =125°C	-	-	100	
Gate to Source Forward Leakage	IGSS(F)	V _{GS} =+30V	-	-	100	nA
Gate to Source Reverse Leakage	I _{GSS(R)}	VGS=-30V	-	-	-100	nA
ON Characteristics						
Drain-to-Source On-Resistance	Rds(on)	V _{GS} =10V, I _D =35A *	-	0.035	0.041	Ω
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D =250µA*	3.5	4.0	4.5	V
Dynamic Characteristics						
Gate Resistance	Rg	f=1.0MHz	-	0.7	-	Ω
Input Capacitance	Ciss	V _{GS} =0V, V _{DS} =25V,	-	7360	-	pF
Output Capacitance	Coss	f=1.0MHz	-	790	-	
Reverse Transfer Capacitance	Crss		-	30	-	
Switching Characteristics						
Turn-on Delay Time	t _{d (ON)}		-	34	-	ns
Rise Time	tr	I _D =50A, V _{DD} =400V,	-	28	-	
Turn-Off Delay Time	td (OFF)	V _{GS} =13V, R _G =1.8Ω	-	127	-	
Fall Time	tr		-	8	-	
Total Gate Charge	Qg		-	161	-	
Gate to Source Charge	Qgs	 I_D=70A, V_{DD}=520V, V_{GS}=10V 	-	47	-	nC
Gate to Drain ("Miller") Charge	Q_{gd}	VGS=10V	-	64	-	
Source-Drain Diode Characteristi	cs					
Continuous Source Current (Body Diode)	ls	_ T −25°C	-	-	75	А
Maximum Pulsed Current (Body Diode)	Іѕм	- T _c =25°C	-	-	300	А
Diode Forward Voltage	V _{SD}	I _S =75A, V _{GS} =0V*	-	-	1.2	V
Reverse Recovery Time	T _{rr}	I _S =45A, Tj=25℃	-	250	-	ns
Reverse Recovery Charge	Qrr	dIF/dt =100A/µs V _{GS} =0V	-	2000	-	nC

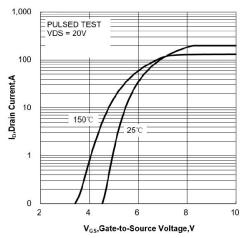
*Pulse width tp≤300µs, δ≤2%

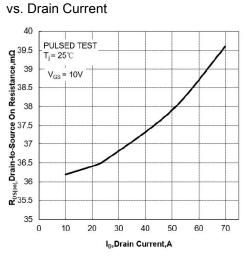


TYPICAL PERFORMANCE CHARACTERISTICS


Fig1. Safe Operating Area


Fig2. Power Dissipation


Fig3. Max Thermal Impedance



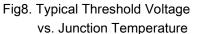


Fig6. Typical Drain to Source ON Resistance

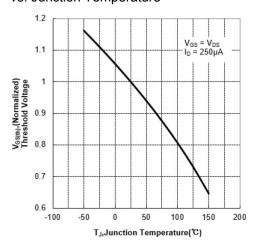


Fig10. Typical Capacitance

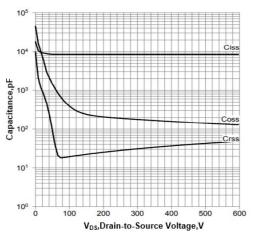


Fig7. Typical Drain to Source on Resistance

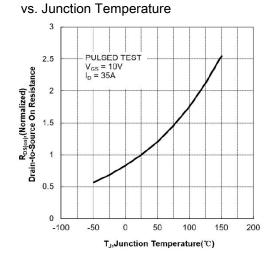
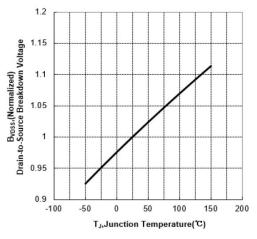


Fig9. Typical Breakdown Voltage

vs. Junction Temperature



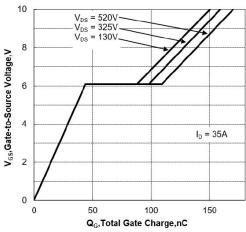


Fig11. Typical Gate Charge

Fig12. Gate Charge Test Circuit

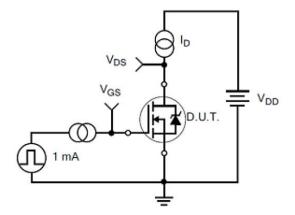


Fig14. Resistive Switching Test Circuit

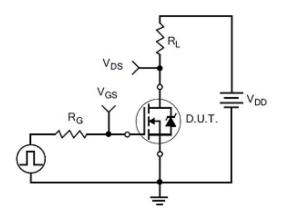


Fig16. Diode Reverse Recovery Test Circuit

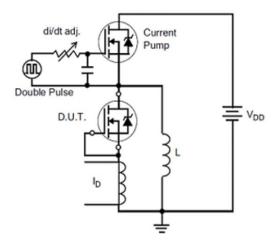


Fig13. Gate Charge Waveforms

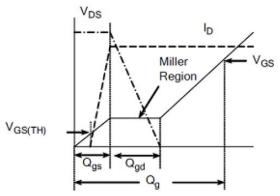


Fig15. Resistive Switching Waveforms

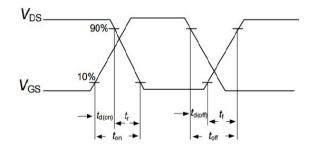


Fig17. Diode Reverse Recovery Waveform

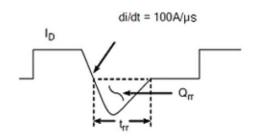
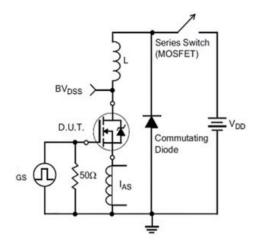
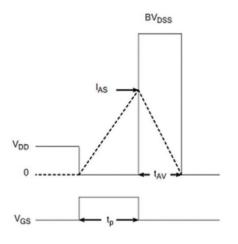
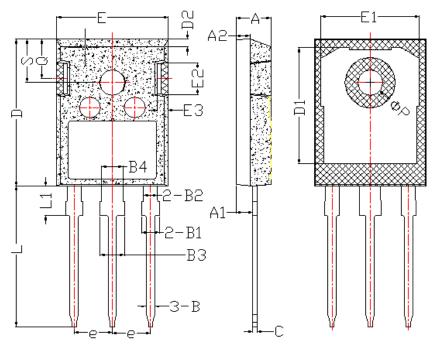


Fig18. Unclamped Inductive Switching Test Circuit


Fig19. Unclamped Inductive Switching Waveform

PACKAGE INFORMATION

Dimension in TO-247 (Unit: mm)

Symbol	Min.	Max.		
A	4.900	5.160		
A1	2.270	2.530		
В	1.850	2.110		
B1	1.070	1.330		
B2	1.900	2.410		
B3	1.750	2.150		
B4	2.870	3.130		
С	0.550	0.680		
D	20.820	21.100		
D1	16.250	17.650		
D2	1.050	1.350		
E	15.700	16.030		
E1	13.100	14.150		
E2	3.680	5.100		
E3	1.680	2.600		
е	5.440			
L	19.800	20.310		
L1	4.170	4.470		
ΦP	3.500	3.700		
Q	5.490	6.000		
S	6.040	6.300		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.