

AiT Semiconductor Inc.

DESCRIPTION

The A6528A is designed for portable RF and wireless applications with demanding performance and space requirements. Because of the built-in low on state resistance transistor, the voltage difference is low and the output current is large. External output feedback can easily get the voltage required by customers. In order to make the load current not exceed the current capacity of the output transistor, the functions of over-current protection, over temperature protection and short circuit protection are built in.

www.ait-ic.com

A6528A supports high-voltage (20V) power supply and enable input, and adopts low-power design, which is suitable for some low-power applications.

The A6528A is available in SOT-25 and SOT89-5 packages.

ORDERING INFORMATION

Package Type	Part Number		
SOT-25	FC	A6528AE5R	
SPQ: 3,000pcs/Reel	ES	A6528AE5VR	
SOT89-5		A6528AK5R	
SPQ: 1,000pcs/Reel	K5	A6528AK5VR	
Noto	V: Halogen free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			

FEATURES

- High feedback accuracy: ± 1.5%
- Low input / output differential pressure : 300 mV typical value (Products with an output value of 3.0V, When IOUT=100mA)
- High ripple rejection ratio : 50dB (1 kHz)
- Low current consumption : 5µA (Typ.)
- Maximum output current : 500mA (V_{IN}≥V_{OUT}+1V)
- Standby current : <1µA
- Built in protection : Built in over current protection, over temperature protection and short circuit protection circuit

APPLICATION

- Mobile phone
- Cordless telephone
- Camera, video recording equipment
- Portable game machine
- Portable AV device
- Voltage reference
- Battery powered system

TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

V _{IN} , Input Voltage		GND-0.3V ~ GND+28V	
V _{CE} , Enable Voltage		GND-0.3V ~ V _{IN} +0.3V	
V _{FB} , Feedback Voltage		GND-0.3V ~ +5V	
Vour, Output Voltage		GND-0.3V ~ +8V	
D. Dewer Dissinction	SOT-25	350mW	
PD, Power Dissipation	SOT89-5	350mW	
TOPR, Operating Ambient Temperature		-40°C ~ +85°C	
T _{STG} , Storage Temperature		-40°C ~ +125°C	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$ unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Feedback Voltage	V _{FB}	V _{IN} =5V, V _{OUT} = 3.3V I _{OUT} = 30mA	1.182	1.200	1.218	V
Output Current	Ιουτ	$V_{IN} \ge V_{OUT(S)}$ +1.0V	-	500	-	mA
Dropout Voltage	VDrop	I _{OUT} = 50mA	-	0.12	0.20	V
		I _{OUT} = 100mA	-	0.30	0.45	
Line Regulations	$\frac{\Delta V_{OUT1}}{\Delta V_{IN} \times V_{OUT}}$	V _{OUT(S)} +0.5V≤V _{IN} ≤6V, I _{OUT} = 30mA	-	0.10	0.20	%/V
Load Regulation	ΔV_{OUT2}	$V_{IN} = V_{OUT(S)} + 1.0V,$ 1.0mA $\leq I_{OUT} \leq 100$ mA	-	50	100	mV
Output Voltage Temperature Characteristics	$\frac{\Delta V_{OUT}}{\Delta T_A \times V_{OUT}}$	$V_{IN} = V_{OUT(S)} + 1.0V,$ $I_{OUT} = 10mA,$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	-	±100	-	ppm/°C
Supply Current	I _{ss1}	$V_{IN} = V_{OUT(S)} + 1.0V$	-	5	8	μA
Turn Off Current	I _{shut}	V _{IN} =5V, V _{CE} =0	-	-	1	μA
Input Voltage	VIN	-	2.0	-	20	V
Ripple-Rejection	PSRR	$V_{IN} = V_{OUT(S)} + 1.0V,$ f=1kHz, $V_{rip}=0.5V_{rms},$ I _{OUT} = 50mA	-	50	-	dB
Short-Circuit Current	Ishort	V _{IN} = V _{OUT(S)} +1.0V, ON/OFF Terminal is ON, V _{OUT} =0V	-	35	-	mA
CE "High" Voltage	VCEH	-	1.2	-	-	V
CE "Low" Voltage	V _{CEL}	-	-	-	1.0	V
Current Limit	I _{LIM}	$V_{IN} = V_{OUT(T)} + 1.0V$	-	700	-	mA

TYPICAL PERFORMANCE CHARACTERISTICS

Fig1. PSRR

 $V_{\text{OUT}}=3.3V, V_{\text{IN}}=\text{CE}=V_{\text{OUT}}+1V, I_{\text{OUT}}=50\text{mA}, \ V_{\text{PP}}=1V, \ \text{F}=1\text{kHz}, \ C_{\text{IN}}=C_{\text{OUT}}=4.7\text{uF} \ , \ P_{\text{SRR}}=43.22\text{db}$

Fig 2. Transient Response of Input Voltage

Vout=1.8V, VIN=2.8V~3.8V, IOUT=50mA, CIN=COUT=4.7uF

BLOCK DIAGRAM

DETAILED INFORMATION

Input Output Capacitance

It is recommended to use electrolytic capacitor as input capacitor, and the withstand voltage should be at least 35V. If ceramic capacitor is used, it is recommended to use a 1Ω resistor (R0) in series; The output capacitor is recommended to be more than 4.7uF; CE pin forbids the control signal to appear separately when V_{IN} has no input signal.

PCB Layout

In order to get better use effect, the main precautions of PCB layout are as follows :

The input capacitance and output capacitance should be as close to the chip pin as possible.

The wiring of V_{IN} and V_{OUT} should use thick wire as far as possible to reduce the wiring resistance and improve the load performance.

PCB to do heat treatment to ensure the normal operation of the chip.

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)

Symbol	Min.	Max.	
A	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
E	1.500	1.700	
E1	2.650	2.950	
е	0.950(BSC)		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	

Dimension in SOT89-5 (Unit: mm)

Symbol	Min.	Max.	
A	1.400	1.600	
b	0.320	0.520	
b1	0.360	0.560	
с	0.350	0.400	
D	4.400	4.600	
D1	1.400	1.800	
E	2.300	2.600	
E1	3.940	4.250	
е	1.500 TYP		
e1	2.900 3.100		
L	0.900 1.100		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or serve property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.