

DESCRIPTION

The AL1G17 Single Schmitt-trigger buffer is designed for 1.65V to 5.5V Vcc operation.

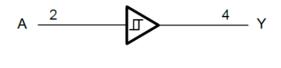
The AL1G17 device contains one buffer and performs the Boolean function Y=A. The device functions as an independent buffer with Schmitt-trigger inputs, so the device has different input threshold levels for positivegoing (V_{T+}) and negative going (V_{T-}) signals to provide hysteresis(ΔV_T) which makes the device tolerant to slow or noisy input signals.

This device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The AL1G17 is available in Green SOT-25 and SC70-5 packages.

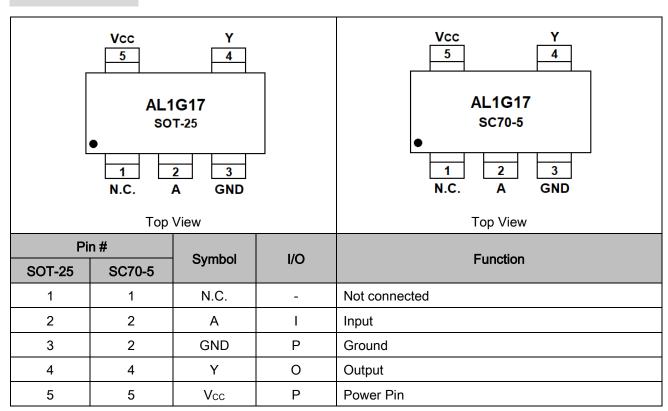
ORDERING INFORMATION

Package Type	Part Number			
SOT-25	E5	AL1G17E5R		
SPQ: 3,000pcs/Reel	EĐ	AL1G17E5VR		
SC70-5	OF.	AL1G17C5R		
SPQ: 3,000pcs/Reel	C5	AL1G17C5VR		
Note	V: Halogen free Package			
Note	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Operating Voltage Range:1.65V to 5.5V
- Low Power Consumption:1µA (Max)
- Operating Temperature Range:
 -40°C to +125°C
- Inputs Accept Voltage to 5.5V
- High Output Drive: ±24mA at Vcc=3.0V
- I_{off} Supports Partial-Power-Down Mode
 Operation

APPLICATION


- AC Receiver and
- Home Theaters
- Blu-ray Players and Home Theaters
- Desktops or Notebook PCs
- Digital Video Cameras (DVC)
- Mobile Phones
- Personal Navigation Device (GPS)
- Portable Media Player

FUNCTIONAL BLOCK DIAGRAM

REV1.0 - OCT 2021 RELEASED - -1

PIN DESCIPTION

FUNCTION TABLE

Input	Output
Α	Y
Н	Н
L	L

Y=A

H=High Voltage Level

L=Low Voltage Level

REV1.0 - OCT 2021 RELEASED - -2 -

ABSOLUTE MAXIMUM RATINGS

 $T_A = +25$ °C, unless otherwise noted. (1)

$T_A = +25^{\circ}C$, unless otherwise noted.	(1)	
V _{CC} , Supply Voltage Range	-0.5V ~ +6.5V	
V _I , Input Voltage Range (1)	-0.5V ~ +6.5V	
Vo, Voltage range applied to any or power-off state (1)	utput in the high-impedance or	-0.5V ~ +6.5V
Vo, Voltage range applied to any or	· · · · · · · · · · · · · · · · · · ·	-0.5V ~ V _{CC} +0.5V
I _{IK} , Input Clamp Current	V _I <0	-50mA
Іок, Output Clamp Current	Vo<0	-50mA
Io, Continuous Output Current		±50mA
Continuous Current Through Vcc o	r GND	±100mA
T _J , Junction Temperature		+150°C
T _{STG} , Storage Temperature		-65°C ~ +150°C
ESD Ratings		
V Flootwootetia Diaghawaa	Human-Body Model (HBM)	±8000V
V _(ESD) , Electrostatic Discharge	Machine Model (MM)	±500V
Thermal Information		
R _{0JA} , Junction-to-Ambient	SOT-25	273.8°C/W
Thermal Resistance	SC70-5	214.7°C/W
R _{θJC(top)} ,Junction-to-Case(Top)	SOT-25	126.8°C/W
Thermal Resistance	SC70-5	127.1°C/W
R _{θJB} , Junction-to-Board	SOT-25	85.9°C/W
Thermal Resistance	SC70-5	60.0°C/W
Ψ _{JT} , Junction-to-Top	SOT-25	10.9°C/W
haracterization Parameter SC70-5		33.4°C/W
Ψ _{JB} ,Junction-to-Board	SOT-25	84.9°C/W
Characterization Parameter	SC70-5	59.8°C/W
	•	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

REV1.0 - OCT 2021 RELEASED - - 3 -

⁽¹⁾ The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ The value of V_{CC} is provided in the Recommended Operating Conditions table.

RECOMMENDED OPERATING CONDITIONS

At $T_A = +25$ °C, unless otherwise noted.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Operating	1.65	-	5.5		
Supply Voltage	Vcc	Data retention only	1.50	-	-	V	
Input Voltage	Vı		0	-	5.5	V	
Output Voltage	Vo		0	-	Vcc	V	
Operating Temperature	TA		-40	-	+125	°C	

AC ELECTRICAL CHARACTERISTICS

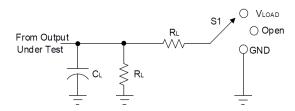
At $T_A = +25$ °C, unless otherwise noted.

Parameter	Symbol	Condition	ons	Temp	Min.	Тур.	Max.	Unit
		V _{CC} =1.8V±0.15V	C _L =30pF,	-40°C ~ +125°C		21		
			R _L =500Ω	-40 6 14 125 6		21		
		V _{CC} =2.5V±0.2V	C _L =30pF,	-40°C ~ +125°C	_	7.8		
Drangation Dalay			R _L =500Ω	-40 C ~ +125 C	_	7.0	-	20
Propagation Delay	t _{pd}	V _{CC} =3.3V±0.3V	C _L =50pF,	-40°C ~ +125°C		E 7		ns
			R _L =500Ω	-40 C ~ +125 C	ı	5.7	_	-
		V _{CC} =5V±0.5V	C∟=50pF,	-40°C ~ +125°C	1	4.2	-	
			R _L =500Ω	-40 C ~ +125 C				
Innut Canacitanas		V _{CC} =3.3V	V _I =V _{CC} or	125°C		4		"F
Input Capacitance	Ci		GND	+25°C	_	4	-	pF
		V _{CC} =1.8V			1	21	-	
Power Dissipation		V _{CC} =2.5V	f_40MII_	+25°C	1	22	-	F
Capacitance	C _{pd}	V _{CC} =3.3V	f=10MHz		-	22	-	pF
		V _{CC} =5V			ı	25	-	

REV1.0 - OCT 2021 RELEASED - -4-

DC ELECTRICAL CHARACTERISTICS

At $T_A = +25$ °C, unless otherwise noted.


	Parameter	Conditions	Temp	Min.	Тур.	Max.	Unit
		V _{CC} =1.65V		0.75	-	1.05	
	Positive Going Input	V _{CC} =2.3V		1.25	-	1.55	
V _{T+}	Threshold Voltage	V _{CC} =3V	-40°C ~ +125°C	1.50	-	2.10	V
	Threshold voltage	V _{CC} =4.5V		2.30	-	3.00	
		V _{CC} =5.5V		2.80	-	3.40	
		V _{CC} =1.65V		0.30	-	0.60	
	Negative Going Input	V _{CC} =2.3V		0.35	-	0.65	
V _{T-}	Threshold Voltage	V _{CC} =3V	-40°C ~ +125°C	0.45	-	0.75	V
	Threshold Voltage	V _{CC} =4.5V		0.70	-	1.00	
		V _{CC} =5.5V		0.85	-	1.15	
		V _{CC} =1.65V		0.35	-	0.60	V
		V _{CC} =2.3V		0.60	-	1.20	
ΔV_T	Hysteresis (V _{T+} - V _{T-})	V _{CC} =3V	-40°C ~ +125°C	1.05	-	1.65	
		V _{CC} =4.5V		1.60	-	2.00	
		V _{CC} =5.5V		1.95	-	2.25	
		Іон=-100μΑ,		Vcc	_	_	V
		V _{CC} =1.65V to 5.5V		- 0.1	-	_	
		I _{OH} =-4mA, V _{CC} =1.65V		1.2	-	-	
Vон		I _{OH} =-8mA, V _{CC} =2.3V	-40°C ~ +125°C	1.9	-	-	
		I _{OH} =-16mA, V _{CC} =3V		2.4	-	-	-
		I _{OH} =-24mA, V _{CC} =3V		2.3	-	-	
		I _{OH} =-32mA, V _{CC} =4.5V		3.8	-	-	
		I _{OH} =100μA,				0.40	
		V _{CC} =1.65V to 5.5V		-	-	0.10	
		I _{OH} =4mA, V _{CC} =1.65V		-	-	0.45	
V_{OL}		I _{OH} =8mA, V _{CC} =2.3V	-40°C ~ +125°C	-	-	0.30	V
		I _{OH} =16mA, V _{CC} =3V		-	-	0.40	
		I _{OH} =24mA, V _{CC} =3V		-	-	0.55	
		I _{OH} =32mA, V _{CC} =4.5V		-	-	0.55	
lı	A input	V _I =5.5V or GND,	+25°C	-	±0.1	±1	μΑ
11	Ailiput	V _{CC} = 0V to 5.5V	-40°C ~ +125°C	-	-	±5	
l _{off}		V _I or V _O =5.5V, V _{CC} =0V	+25°C		±0.1	±1	Δ
Ιοπ		V101 V0-3.3V, VCC-0V	-40°C ~ +125°C			±10	μA
Icc		V _I =5.5V or GND, I _O =0,	+25°C	_	0.1	1	μA
		V _{CC} =1.65V to 5.5V	-40°C ~ +125°C	-	-	10	μΛ
		One input at V _{CC} -					
Δl _{CC}		0.6V, Other inputs at	4000 . 40500			F00	
		Vcc or GND	-40°C ~ +125°C	-	-	500	μA
		V _{CC} =3V to 5.5V					
		100 01 10 0.01					l

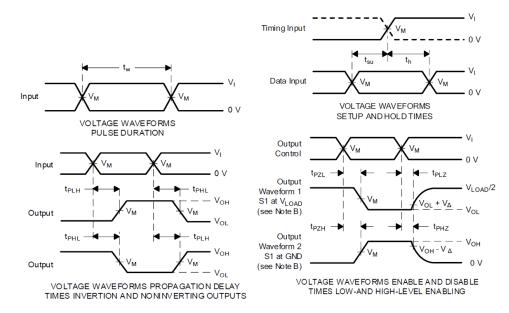
REV1.0 - OCT 2021 RELEASED - - 5 -

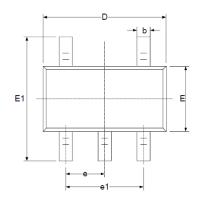
DETAILED INFORMATION

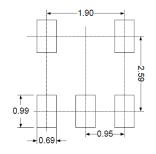
Parameter Measurement Information

TEST	S1
t _{PLH} / t _{PHL}	Open
t _{PIZ} / t _{PZL}	V_{LOAD}
t _{PHZ} / t _{PZH}	GND

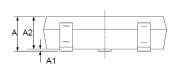
V	Inputs		V	V V		0			V	
Vcc	Vı	t _r /t _f	V _M	VLOAD		CL		₹ L	VΔ	
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	30pF	1ΜΩ	1kΩ	0.15V	
2.5V±0.2V	Vcc	≤2ns	V _{CC} /2	2 x V _{CC}	15pF	30pF	1ΜΩ	500Ω	0.15V	
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	15pF	50pF	1ΜΩ	500Ω	0.3V	
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	15pF	50pF	1ΜΩ	500Ω	0.3V	

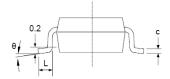



Figure 1. Load Circuit and Voltage Waveforms

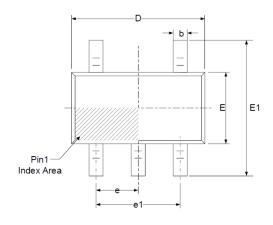

- (A) C_L includes probe and jig capacitance.
- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 Ω .
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- (F) t_{PZL} and t_{PZH} are the same as t_{en}.
- (G) t_{PLH} and t_{PHL} are the same as t_{pd} .
- (H) All parameters and waveforms are not applicable to all devices.

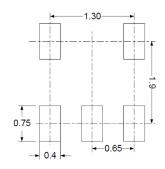
REV1.0 - OCT 2021 RELEASED - - 6 -


PACKAGE INFORMATION

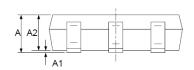

Dimension in SOT-25 (Unit: mm)

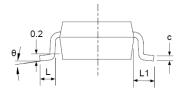
RECOMMENDED LAND PATTERN





Cymbol	Millimeters				
Symbol	Min	Max			
А	1.050	1.250			
A1	0.000	0.100			
A2	1.050	1.150			
b	0.300	0.500			
С	0.100	0.200			
D	2.820	3.020			
E	1.500	1.700			
E1	2.650	2.950			
е	0.950	BSC			
e1	1.800	2.000			
L	0.300	0.600			
θ	0°	8°			


REV1.0 - OCT 2021 RELEASED - - 7 -


Dimension in SC70-5 (Unit: mm)

RECOMMENDED LAND PATTERN

Cumhal	Millimeters				
Symbol	Min	Max			
Α	0.900	1.100			
A1	0.000	0.100			
A2	0.900	1.000			
b	0.150	0.350			
С	0.080	0.150			
D	2.000	2.200			
Е	1.150	1.350			
E1	2.150	2.450			
е	0.650	BSC			
e1	1.300	BSC			
L	0.260	0.460			
L1	0.525				
θ	0°	8°			

REV1.0 - OCT 2021 RELEASED - -8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - OCT 2021 RELEASED - - 9 -