A4030
BATTERY MANAGEMENT

ONE CELL Li-iON/Li-POLYMER BATTERY PROTECTION W/INTEGRATE MOSFET

DESCRIPTION

The A4030 provides a high integration solution for lithium-ion/polymer battery protection. The A4030 contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits.

The A4030 has all the protection functions required in the battery application including over-charging, over-discharging, over-current and load short circuiting protection etc. The low standby current drains little current from the cell while in storage.

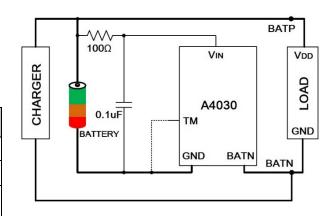
The device is targeted for any Li-Ion and Li-Poly battery-powered information appliances requiring long-term battery life.

The A4030 is available in DFN6(2x2) package.

FEATURES

- Protection of Charger Reverse Connection
- Protection of Battery Cell Reverse Connection
- High-accuracy Voltage Detection
- Charger Detection Function
- 0V Battery Charging Enable/Disable Function
- Integrate Advanced Power MOSFET(50mΩ)
- Low Current Consumption
 Operation Mode: 3.0µA typ.

Power-down Mode: 0.1µA max.

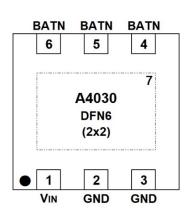

APPLICATION

- One-Cell Lithium-ion Battery Pack
- Lithium-Polymer Battery Pack

TYPICAL APPLICATION

ORDERING INFORMATION

Package Type	Part Number		
DFN6	16	A4030J6R	
(2x2) SPQ: 4,000pcs/Reel	J6	A4030J6VR	
Note	V: Halogen Free Package		
Note	R: Tape & Reel		
AiT provides all RoHS products			



REV1.0 - MAY 2023 RELEASED - -1

A4030 BATTERY MANAGEMENT

ONE CELL Li-iON/Li-POLYMER BATTERY PROTECTION W/INTEGRATE MOSFET

PIN DESCIPTION

DFN6(2x2), J6 Top View

Pin#	Cumbal	Function	
DFN6(2x2)	Symbol		
1	VIN	Power Supply	
2	GND	Ground	
3	GND	Ground	
4	BATN	The Negative Terminal of Battery Pack	
5	BATN	The Negative Terminal of Battery Pack	
6	BATN	The Negative Terminal of Battery Pack	
7	HEARTSINK	Heatsink Must be Connected to BATN	

REV1.0 - MAY 2023 RELEASED - - 2 -

ABSOLUTE MAXIMUM RATINGS

V _{IN} , Supply Voltage Range	GND-0.3V ~ GND+6.0V	
PD, Power Dissipation @T _A =25°C	0.4W	
Package Thermal Resistance	12000011	
(Junction to Ambient)	130°C/W	
Lead Temperature	260°C	
T _{OPA} , Ambient Temperature	-40°C ~ +85°C	
T _{STR} , Storage Temperature	-55°C ~ +125°C	
HBM, ESD Susceptibility	4000V	

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

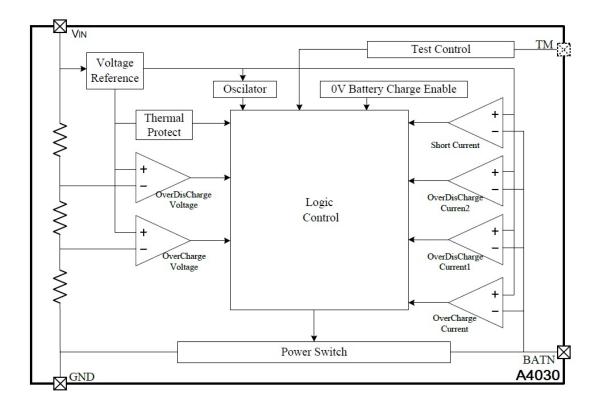
REV1.0 - MAY 2023 RELEASED - - 3 -

A4030 BATTERY MANAGEMENT

ONE CELL Li-iON/Li-POLYMER BATTERY PROTECTION W/INTEGRATE MOSFET

ELECTRICAL CHARACTERISTICS

V_{VIN} =3.5V, T_A=25°C, unless otherwise specification.


Parameter	Conditions	Тур.	Min.	Max.	Unit
VOLTAGE					
Over-Charge Detection Voltage		4.27	4.30	4.33	V
Over-Charge Release Voltage		4.12	4.15	4.18	V
Over-Discharge Detection Voltage		2.46	2.50	2.54	V
Over-Discharge Release Voltage		2.86	2.90	2.94	V
Charger Detection Voltage		-	-0.50	-	V
CURRENT					•
Over-Discharge Current Detection 1	V _{DD} =3.5V	-	1.0	-	Α
Over-Discharge Current Detection 2	V _{DD} =3.5V	-	5.0	-	Α
Load Short Detection	V _{DD} =3.5V	-	5.0	-	Α
Normal Operator Current	V _{DD} =3.5V, V _{BATN} =0V	-	3.0	6.0	μA
Power Down Current	V _{DD} =2.0V, BATN floating	1	-	0.1	μΑ
DELAY TIME					
Over-Charge Voltage Detection Delay Time		-	200	-	mS
Over-Discharge Voltage Detection Delay Time		-	50	-	mS
Over-Discharge Current Detection 1 Delay Time		-	12	-	mS
Over-Discharge Current Detection 2 Delay Time		-	2.5	-	mS
Load Short Detection Delay Time		-	40	-	μS
BATN INTERNAL RESISTANCE					
Internal Resistance between BATN and V _{DD}	V _{DD} =3.5V BATN=1.0V	-	320		kΩ
Internal Resistance between BATN and GND	V _{DD} =2.0V BATN=1.0V	-	100		kΩ
Power FET on Resistance	V _{DD} =3.5V, I _{BATN} =1.0A	-	50		mΩ
Over Temperature Protection		-	100		°C
Over Temperature Hybrid		-	20		°C

Note: Parameter with * is used for 4.35V Battery Protect, Other is for 4.2V Battery Protect

REV1.0 - MAY 2023 RELEASED - - 4 -

BATTERY MANAGEMENT

BLOCK DIAGRAM

REV1.0 - MAY 2023 RELEASED -- 5 -

DETAILED INFORMATION

The A4030 monitors the voltage and current of a battery and protects it from being damaged due to overcharge voltage, over-discharge current, and short circuit conditions by disconnecting the battery from the load or charger. These functions are required in order to operate the battery cell within specified limits.

Normal Operating Mode:

If no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.

Over-Charge Condition:

When the battery voltage becomes higher than the over-charge detection voltage (V_{CU}) during charging under normal condition and the state continues for the overcharge detection delay time (t_{CU}) or longer, the A4030 turns off the power switch FET.

Over-Discharge Condition:

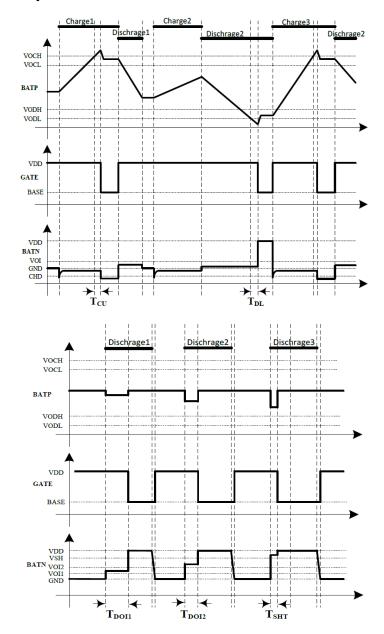
When the battery voltage drops below the over-discharge detection voltage (V_{DL}) during discharging under normal condition and it continues for the over-discharge detection delay time (t_{DL}) or longer, the A4030 turns off the power switch FET and stops discharging. After over-discharging condition, the BATN pin is pulled up to high state by the internal control of A4030, the current of the chip is reduced to the power-down current (I_{PDN}).

At the over-discharge condition, when a charger is connected, the power switch FET is still off. At this time, charging is still permitted through the parasitic diode of the power switch FET, when the battery voltage becomes higher than the over-discharge detection voltage (V_{DL}), the A4030 turns on the power switch FET and changes to the normal condition from the over-discharge condition

Over-Current Condition:

When the discharging current becomes equal to or higher than a specified value during discharging under normal condition and the state continues for the over-current detection delay time or longer, the A4030 turns off power switch FET to stop discharging, and the BATN pin is pulled up to high state by the internal control of A4030. This condition includes over-current1, over-current2 or load short-circuiting.

The over-current condition returns to the normal mode when the load is released or the impedance between BATP and BATN is larger than $500k\Omega$.

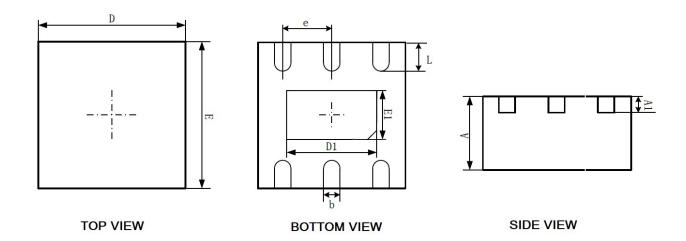

REV1.0 - MAY 2023 RELEASED - - 6 -

A4030 BATTERY MANAGEMENT

ONE CELL Li-iON/Li-POLYMER BATTERY PROTECTION W/INTEGRATE MOSFET

The A4030 provides two over-current detection levels (3A and 10A) with two over-current delay time (T_{Ol1} and T_{Ol2}) corresponding to each over-current detection level.

Delay Circuits:


REV1.0 - MAY 2023 RELEASED - - 7

A4030

BATTERY MANAGEMENT ONE CELL Li-iON/Li-POLYMER BATTERY PROTECTION W/INTEGRATE MOSFET

PACKAGE INFORMATION

Dimension in DFN6(2x2) (Unit: mm)

Symbol	MILLIMETERS		
Symbol	Min.	Max.	
Α	0.527	0.577	
A1	0.127 TYP		
b	0.200	0.300	
D	1.900	2.100	
D1	1.600	1.800	
E	1.900	2.100	
E1	0.800	1.000	
е	0.650 REF		
L	0.250	0.350	

REV1.0 - MAY 2023 RELEASED - - 8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or serve property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAY 2023 RELEASED - - 9 -