

DESCRIPTION

The A7406B is a wide input range, high-efficiency, and high frequency DC-to-DC step-down switching regulator, capable of delivering up to 0.6A of output current.

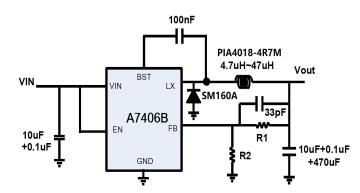
With a fixed switching frequency of 2MHz, this current mode PWM controlled converter allows the use of small external components, such as ceramic input and output caps, as well as small inductors.

Including cold crank and double battery jump-starts, the minimum input voltage may be as low as 4.5V and the maximum up to 60V, with even higher transient voltages. With these high input voltages, linear regulators cannot be used for high supply currents without overheating the regulator. Instead, high efficiency switching regulators such as A7406B must be used to minimize thermal dissipation.

The A7406B is available in SOT-26 package.

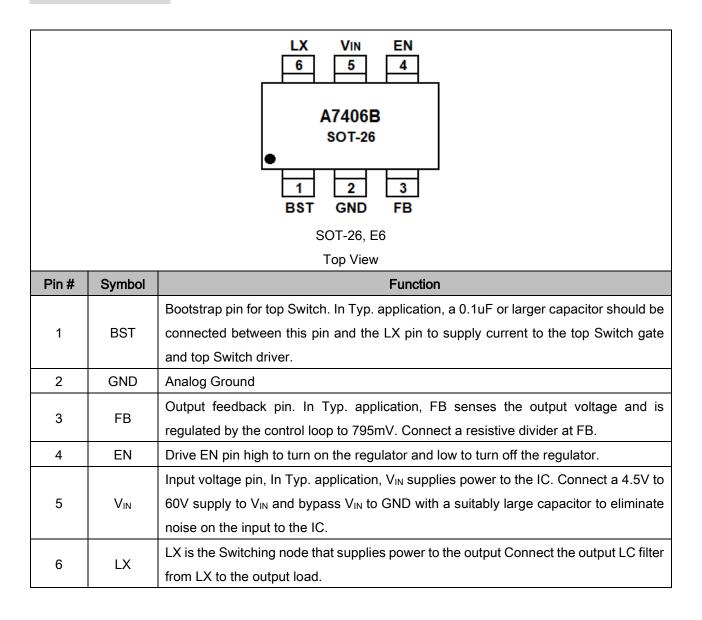
ORDERING INFORMATION

Package Type	Part Number			
SOT-26	E6	A7406BE6R		
SPQ: 3,000pcs/Reel	EO	A7406BE6VR		
Note	V: Halogen free Package			
	R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Wide Input Operating Range from 4.5V to 60V
- 850mΩ Internal NMOS
- Up to 95% Efficiency at 16V in 12Vout L=47uH with 300mA Loading
- Internal Compensation
- Capable of Delivering 600mA Continuous Output Current
- Fixed 2MHz PWM Operation
- Internal Soft Start
- Output Voltage Adjustable Down to 0.795V
- Cycle-By-Cycle Current Limit
- Current Mode Control
- Short-Circuit Protection
- Logic Control Shutdown EN can be Short to VIN
- Thermal Shutdown and UVLO

APPLICATION


- Smart/Industrial/Power Meters
- Industrial Applications
- Automotive Applications

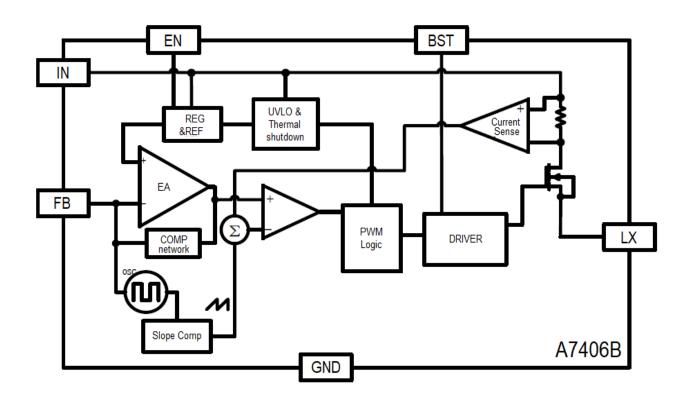
TYPICAL APPLICATION

PIN DESCRIPTION

ABSOLUTE MAXIMUM RATINGS

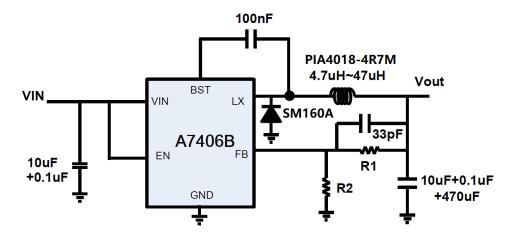
Input Voltage Range		-0.3V~65V	
T _J , Max Operating Junction Temperature		150°C	
LX, EN Voltage		-0.3V ~ V _{IN} +0.3V	
BST Voltage		-0.3V~ LX+6.0\	
FB Voltage		-0.3V ~ 6.0V	
LX to Ground Current		Internally Limited	
To, Operating Temperature		-40°C ~ + 85°C	
θ_{JC} , Package Thermal Resistance	SOT-26	110°C/W	
T _s , Storage Temperature		-55°C ~ + 150°C	
ESD Rating		2500V	

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input Voltage Range	VIN		4.50	-	60	V	
Input Supply Current	lq	V _{FB} =5V, No Loading	-	648	-	μA	
Input Shutdown Current	Isd	V _{EN} <0.3V	-	0.20	3	μA	
-	V _{FB}	4.5 <v<sub>IN<60V</v<sub>	0.780	0.795	0.810	V	
ENABLE							
EN High Level	Ven_on	V _{FB} =0V, Rising	1.23	2.50	-	V	
EN Low Level	V_{EN_OFF}	V _{FB} =0V, Falling	-	1	1.13	V	
EN Hysteresis	$V_{\text{EN}_{\text{HYS}}}$	V _{FB} =0V	-	0.10	-	V	
Enable Input Current	I _{EN}	-	-	4.40	-	μA	
MODULATOR							
OSC Frequency	Fosc	-	1.60	2.00	2.40	MHz	
-	D _{max}	-	-	87	-	%	
Min on Time	T _{ON MIN}	-	-	100	-	ns	
Limited Current	ILIM	-	-	0.95	-	А	
Thermal Shutdown	Temp	Temp Rising	-	160	-	°C	
		Temp Falling	-	140	-	°C	
POWER STAGE OUTPUT							
NMOS Leakage	l _{leakage}	V _{EN} =0V, V _{LX} =0V	-	-	10	μA	
NMOS on Registered	Rdson	V _{IN} =12V,		850	-	mΩ	
NMOS on Resistance		V _{BST} -V _{LX} =5V	-				

TA = 25°C, VIN = VEN = 16V, unless otherwise specified



BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUITS

A7406B minimum duty cycle = 20%, and the relationship between duty cycle to output voltage and input voltage is duty cycle = output voltage / input voltage, so the maximum input voltage = output voltage / 0.2 to ensure that SW does not cause frequency hopping due to too small duty cycle.

DETAILED INFORMATION

Loop Operation

The A7406B is a wide input range, high-efficiency, DC-to-DC step-down switching regulator, capable of delivering up to 0.6A of output current, integrated with a 850mΩ high side MOSFET. It uses a PWM current-mode control scheme. An error amplifier integrates error between the FB signal and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.

APPLICATION INFORMATION

Setting Output Voltages

Output voltages are set by external resistors. The FB threshold is 0.795V.

R_{TOP} = R_{BOTTOM} x [(V_{OUT} / 0.795) - 1]

Inductor Selection

The peak-to-peak ripple is limited to 30% of the maximum output current. This places the peak current far enough from the minimum over current trip level to ensure reliable operation while providing enough current ripples for the current mode converter to operate stably. In this case, for 0.6A maximum output current, the maximum inductor ripple current is 300mA. The inductor size is estimated as following equation:

LIDEAL=(VIN(MAX)-VOUT)/IRIPPLE*DMIN*(1/FOSC)

Therefore, for V_{OUT}=5V, The inductor values is calculated to be L = 13μ H. Chose 15μ H For V_{OUT} = 3.3V, The inductor values is calculated to be L = 9.2μ H. Chose 10μ H

Output Capacitor Selection

For most applications a nominal 22µF or larger capacitor is suitable. The A7406B internal compensation is designed for a fixed corner frequency that is equal to FC= 8.7kHz

For example, for Vout=5V, L=15µH, Cout=22µF.

The output capacitor keeps output ripple small and ensures control-loop stability. The output capacitor must also have low impedance at the switching frequency. Ceramic, polymer, and tantalum capacitors are suitable, with ceramic exhibiting the lowest ESR and high-frequency impedance. Output ripple with a ceramic output capacitor is approximately as follows:

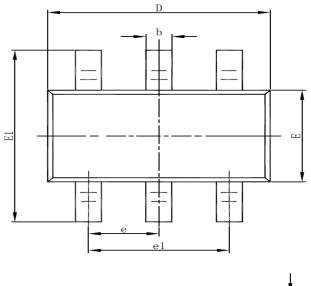
$$V_{\text{RIPPLE}} = I_{L(\text{PEAK})}[1 / (2\pi x \text{ fosc } x \text{ Cout})]$$

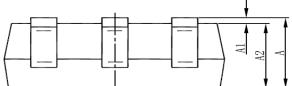
If the capacitor has significant ESR, the output ripple component due to capacitor ESR is as follows:

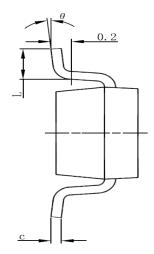
 $V_{\text{RIPPLE(ESR)}} = I_{L(\text{PEAK})} x \text{ ESR}$

Input Capacitor Selection

The input capacitor in a DC-to-DC converter reduces current peaks drawn from the battery or other input power source and reduces switching noise in the controller. The impedance of the input capacitor at the switching frequency should be less than that of the input source so high-frequency switching currents do not pass through the input source. The output capacitor keeps output ripple small and ensures control-loop stability.


Components Selection


R1(K)	Vo (V)	R2 (K)	Recommend
127	12	9.00	9.09K
127	5	23.97	23.70K
127	3.30	40.24	40.20K



PACKAGE INFORMATION

Dimension in SOT-26 Package (Unit: mm)

Symbol	Millim	ieters	Inches		
	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
с	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.