DESCRIPTION

The AL1G04 is a single inverter gate performs the Boolean function $Y=\overline{A}$.

The AL1G04 is designed for 1.65V to 5.5V V_{CC} operation.

AL1G04 operates over an ambient temperature range of -40°C to +125°C.

The AL1G04 is available in SOT25, SC70-5 and DFN6(1x1) packages. I

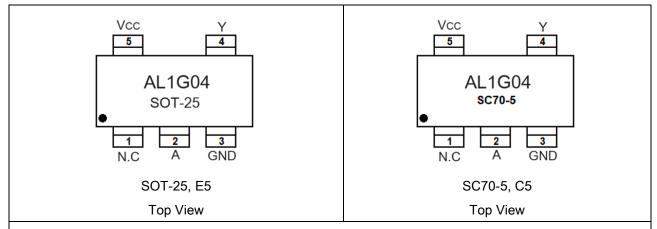
ORDERING INFORMATION

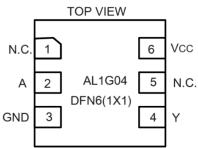
Package Type	Part Number		
SOT-25	E5	AL1G04E5R	
SPQ: 3,000pcs/Reel	ES	AL1G04E5VR	
SC70-5	C5	AL1G04C5R	
SPQ:3,000pcs/Reel	Co	AL1G04C5VR	
DFN6(1x1)	ISC	AL1G04J6CR	
SPQ:5,000pcs/Reel	J6C AL1G04J6CVR		
Note	V: Halogen free Package R: Tape & Reel		
AiT provides all R	oHS pro	ducts	

FEATURES

- Operating Voltage Range: 1.65V to 5.5V
- Low Power Consumption: 1µA (Max).
- Operating Temperature Range: -40°C to +125°C
- Input Accept Voltage to 5.5V
- High Output Drive: ±24mA at V_{CC}=3.0V
- Ioff Supports Partial-Power-Down Mode Operation.

APPLICATION


- ATCA Solutions
- Active Noise Cancellation (ANC)
- Barcode Scanner
- Blood Pressure Monitor
- CPAP Machine
- Cable Solutions
- DLP 3D Machine Vision, Hyperspectral Imaging, Optical Networking, and Spectroscopy
- E-Book
- Embedded PC
- Field Transmitter: Temperature or Pressure Sensor
- Fingerprint Biometrics
- HVAC: Heating, Ventilating, and air Conditioning
- Network-Attached Storage (NAS)
- Server Motherboard and PSU
- Software Defined Radio (SDR)
- TV: High-Definition (HDTV), LCD, and Digital
- Video Communications System
- Wireless Data Access Card, Headset, Keyboard, Mouse, and LAN Card
- X-ray: Baggage, Scanner, Medical, and Dental
- Isolate RS-485 Communication
- Factory Automation
- Photovoltaic Inverter
- Motor Driver


SIMPLIFIELD SCHEMATIC

REV1.0 - JUN 2024 RELEASED - -1-

PIN DESCRIPTION

DFN6(1x1), J6C Top View

	PIN#		Symbol	Function
SOT-25	SC70-5	DFN6(1x1)	Symbol	Function
1	1	1	N.C.	Not Connected
2	2	2	Α	Input
3	3	3	GND	Ground
4	4	4	Υ	Output
-	-	5	N.C.	Not Connected
5	5	6	Vcc	Power Pin

REV1.0 - JUN 2024 RELEASED - -2 -

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

	,	
V _{CC} , Supply Voltage Range		-0.5V ~ + 6.5V
V _I , Input Voltage Range (1)	V _I , Input Voltage Range (1)	
Vo, Voltage Range Applied to Any Outp	ut in The High-Impedance or Power-Off State(1)	-0.5V ~ + 6.5V
Vo, Voltage Range Applied to any Outp	ut in the High or Low State (1)(2)	-0.5V ~ V _{CC} +0.5V
I _{IK} , Input Clamp Current	V _I <0	-50mA
Iок, Output Clamp Current	Vo<0	-50mA
Io, Continuous Output Current		±50mA
Io, Continuous Current through Vcc or G	GND	±100mA
	SOT-25	230°C/W
θ_{JA} , Package Thermal Impedance $^{(3)}$	SC70-5	380°C/W
	DFN6(1x1)	438°C/W
T _J , Junction Temperature ⁽⁴⁾		-65°C ~ +150°C
T _{STG} , Storage Temperature		-65°C ~ +150°C
01 1		

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The value of V_{CC} is provided in the Recommended Operating Conditions table.
- (3) The package thermal impedance is calculated in accordance with JESD-51.
- (4) The maximum power dissipation is a function of TJ(MAX), $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD RATINGS

Parameter	Symbol	Min	Unit
Human-Body Model (HBM),		+4000	
per ANSI/ESDA/JEDEC JS-001 (1)		±4000	
Charged-Device Model (CDM), per	V _(ESD) Electrostatic discharge	14500	V
ANSI/ESDA/JEDEC JS-002 (2)		±1500	
Machine Model (MM)		±200	

- (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

REV1.0 - JUN 2024 RELEASED - - 3 -

RECOMMENDED OPERATING CONFITIONS

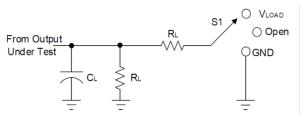
TA=25°C, unless otherwise noted. (1)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Cumply Valtage	M	Operating	1.65	-	5.5	
Supply Voltage	Vcc	Data Retention only	1.50	-	-	
		V _{CC} = 1.65 V ~1.95 V	0.65x Vcc	-		.,
Link Lovellanut Voltone	V	V _{CC} = 2.3V ~2.7 V	1.70	-		V
High-Level Input Voltage	V _{IH}	V _{CC} = 3 V ~3.6 V	2	-		
		V _{CC} = 4.5 V ~5.5 V	0.70x V _{CC}	-		
	VIL	V _{CC} = 1.65 V ~1.95 V	-	-	0.35x Vcc	
Level evel leave Veltage		V _{CC} = 2.3V ~2.7 V	-		0.70	V
Low-Level Input Voltage		V _{CC} = 3 V ~3.6 V	-		0.80	
		V _{CC} = 4.5 V ~5.5 V	-		0.30x Vcc	
Input Voltage	Vı		0	-	5.5	V
Output Voltage	Vo		0	-	5.5	V
		$V_{CC} = 1.8 V \pm 0.15 V, 2.5 V \pm$	-		20	
Input Transition Rise or Fall	Δt/Δν	0.2 V		-		A /
		$V_{CC} = 3.30 \text{ V} \pm 0.3 \text{ V}$	-		10	ns/V
		V _{CC} = 5 V ± 0.5V	-		5	
Operating Temperature	TA		-40	-	+125	°C

⁽¹⁾ All currents into the device are positive and all currents out of the device are negative; all voltages are to ground unless otherwise specified.

REV1.0 - JUN 2024 RELEASED - - 4 -

DC CHARACTERISTICS


Para	meter	Conditio	ns	Min	Тур.	Max	Unit	
		I_{OH} = -100 μ A, V_{CC} =1.65~5.5V		Vcc~0.1	-	-		
		I _{OH} = -4mA, V _{CC} =1.65V		120	-	-		
V	ОН	$I_{OH} = -8mA, V_{CC}=2.3V$	-40°C ~ +125°C	1.90	-	-	V	
		$I_{OH} = -16mA$, $V_{CC}=3V$		2.40	-	-		
		I _{OH} = -24mA, V _{CC} =3V		2.30	-	-		
		$I_{OH} = -32mA, V_{CC} = 4.5V$		3.80	-	-		
		I_{OH} = 100 μ A, V_{CC} =1.65~5.5V		ı	-	0.10		
		I _{OH} = 4mA, V _{CC} =1.65V		ı	-	0.45	V	
V	OL	$I_{OH} = 8mA, V_{CC}=2.3V$	-40°C ~ +125°C	-	-	0.30		
		I _{OH} = 16mA, V _{CC} =3V		-	-	0.40		
		I _{OH} = 24mA, V _{CC} =3V		-	-	0.55		
		I _{OH} = 32mA, V _{CC} =4.5V		-	-	0.55		
l _l	A legant	$V_1 = 5.5V$ or GND,			±0.10	±1		
II	A Input	Vcc=0V~5.5V			-	±5	μA	
	_	\/.or\/_= F F\/_\/_==0\/	+25℃	ı	±0.10	±1		
I d	off	V_1 or $V_0 = 5.5V$, $V_{CC}=0V$	-40°C ~ +125°C	ı	-	±10	μA	
		$V_1 = 5.5 \text{V or GND}, I_0 = 0,$	+25℃	ı	0.10	1		
l Ic	CC	Vcc=1.65V~5.5V	-40°C ~ +125°C	-	-	10	μA	
ΔΙ	cc	One input at V _C C-0.6V, Other inputs at V _{CC} or GND, V _{CC} =3V~5.5V	-40°C ~ +125°C	-	-	500	μΑ	
C _i , Input C	apacitance	$V_1 = V_{CC}$ or GND, $V_{CC}=3.3V$	+25°C	-	4		pF	

AC CHARACTERISTICS

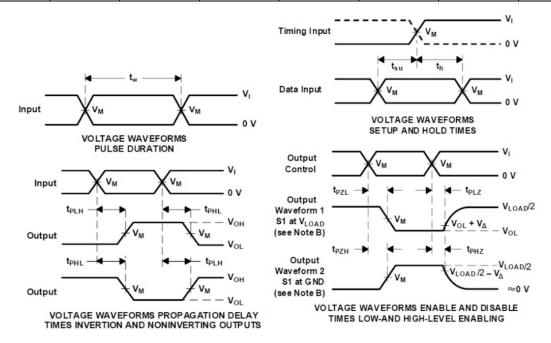
Parameter	Symbol	Conditions		Min	Тур.	Max	Unit
		V _{CC} =1.8V±0.15V	C _L =30pF, R _L =1KΩ	-	13	ı	
D		V _{CC} =2.5V±0.2V	C _L =30pF, R _L =500Ω	-	5.1	ı	no
Propagation Delay	t _{pd}	Vcc=3.3V±0.3V	C _L =50pF, R _L =500Ω	-	4.2	1	ns
		Vcc=5V±0.5V	C _L =50pF, R _L =500Ω	-	3.3	-	
Power Dissipation Capacitance	C_{pd}	Vcc=1.8V±0.15V	f=10MHz	-	16	-	
		V _{CC} =2.5V±0.2V		-	18	-	nΕ
		Vcc=3.3V±0.3V		-	18	1	pF
		Vcc=5V±0.5V		-	20	-	

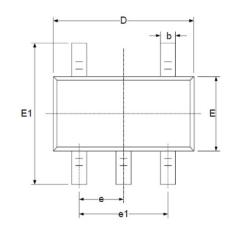
REV1.0 - JUN 2024 RELEASED - - 5 -

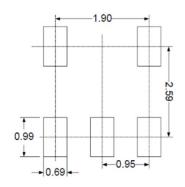
PARAMETER MEASUREMENT INFORMATION

TEST	S1
tplh/tphl	Open
t _{PIZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

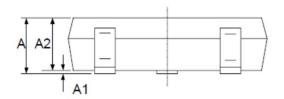
V	In	puts	\/A4	V	•	В	\/A
Vcc	VI	tr/tf	VM	VLOAD	CL	RL	VΔ
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	1kΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	30pF	500Ω	0.15V

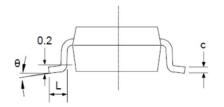



Fig 1. Load Circuit and Voltage Waveforms

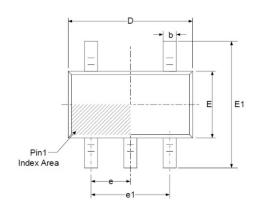

- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) Since this device has open-drain outputs, t_{PLZ} and t_{PZ}L are the same as t_{od},
- (F) t_{PZL} is measured at $V_{M.}$
- (G) t_{PLZ} is measured at V_{OL} + V_{Δ} .
- (H) All parameters and waveforms are not applicable to all devices.

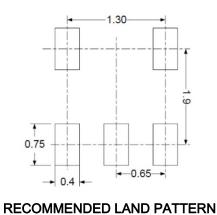
REV1.0 - JUN 2024 RELEASED - - 6 -


PACKAGE INFORMATION

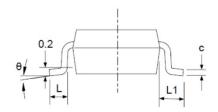

Dimension in SOT-25 (Unit: mm)

RECOMMENDED LAND PATTERN

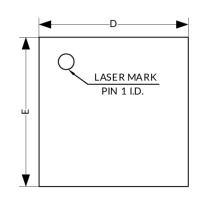


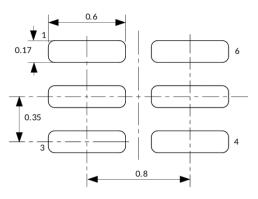


Cymah al	Millim	neters
Symbol	Min	Max
Α	1.050	1.250
A1	0.000	0.100
A2	1.050	1.150
b	0.300	0.500
С	0.100	0.200
D	2.820	3.020
E	1.500	1.700
E1	2.650	2.950
е	0.950	BSC.
e1	1.800	2.000
L	0.300	0.600
θ	0°	8 °

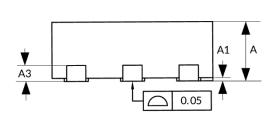

REV1.0 - JUN 2024 RELEASED - - 7

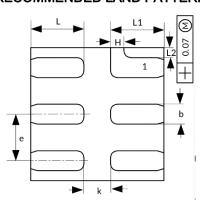
Dimension in SC70-5 (Unit: mm)


A A2 A2



Cymah al	Millim	neters	
Symbol	Min	Max	
Α	0.900	1.100	
A1	0.000	0.100	
A2	0.900	1.000	
b	0.150	0.350	
С	0.080	0.150	
D	2.000	2.200	
Е	1.150	1.350	
E1	2.150	2.450	
е	0.6950	BSC.	
e1	1.300	BSC.	
L	0.260	0.460	
L1	0.525		
θ	0°	8°	


REV1.0 - JUN 2024 RELEASED - -8 -


Dimension in DFN6(1x1) (Unit: mm)

RECOMMENDED LAND PATTERN

Symphol .	Millimeters			
Symbol	Min	Max		
Α	0.340	0.400		
A1	0.000	0.050		
А3	0.100	REF.		
b	0.100	0.200		
D	0.950	1.050		
E	0.950	1.050		
е	0.300	0.400		
Н	0.100	BSC.		
K	0.150	-		
L	0.350	0.450		
L1	0.350	0.450		
L2	0.075 REF.			

REV1.0 - JUN 2024 RELEASED - - 9 -

AL1G04
LOGIC
LOW POWER SINGLE INVERTER GATE

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUN 2024 RELEASED - - 10 -