DESCRIPTION

The guadruple buffer is designed for 1.65V to 5.5V Vcc operation.

The AL4G125 features independent line drivers with 3state outputs. Each output is disabled when the associated output-enable (\overline{OE}) input is high.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver.

The AL4G125 operates over ambient temperature range of -40°C to +125°C.

The AL4G125 is available in SOP14 and TSSOP14 packages.

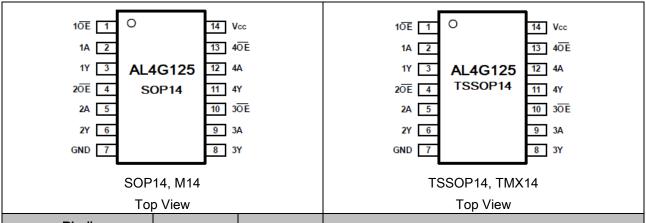
ORDERING INFORMATION

Package Type	Part Number			
SOP14	M14	AL4G125M14R		
SPQ: 4,000/Reel	IVI 14	AL4G125M14VR		
TSSOP14	TMX14	AL4G125TMX14R		
SPQ: 4,000/Reel	TIVIX 14	AL4G125TMX14VR		
Note	V: Halogen free Package			
	R: Tape & Reel			
AiT provides all RoHS products				

FEATURES

- 3-State outputs
- Separate (\overline{OE}) for all 4 buffers
- Operating from 1.65V to 5.5V
- Low Power Consumption:1µA (Max)
- Operating Temperature: -40°C to +125°C
- Inputs Accept Voltage to 5.5V
- ±24mA Output Drive at V_{CC}=3.0V
- Latch-up Performance Exceeds 100mA

APPLICATION


- Cable modem termination systems
- Personal Navigation Device (GPS)
- Digital Picture Frame (DPF)
 - IP phones: wired and wireless
- Optical modules
- Optical networking:
 - -EPON or video over fiber
- Point-to-point microwave backhaul
- Power: telecom DC/DC modules:
 - -Analog or Digital
- Private branch exchanges (PBX)
- **TETRA** base stations
- Telecom base band units
- Telecom shelters
 - -Filter units
 - -Power distribution unit (PDU)
 - -Power monitoring units (PMU)
 - -Wireless battery monitoring
 - -Remote radio units (RRU)
 - -Tower mounted amplifiers (TMA)
 - Vector signal analyzers and generators
- Video conferencing: IP-based HD
- WiMAX & wireless infrastructure equipment
- Wireless communications testers
- xDSL modems and DSLAM

LOGIC SYMBOL

REV1.0 - MAY 2022 RELEASED -

PIN DESCRIPTION

	10	PVICW		100 1100
F	Pin#	Cymahal	Time	Function
SOP14	TSSOP14	Symbol	Туре	Function
1	1	1 0 E	I	Output Enable for buffer 1
2	2	1A	I	Input of buffer 1
3	3	1Y	0	Output of buffer 1
4	4	2 0 E	I	Output Enable for buffer 2
5	5	2A	I	Input of buffer 2
6	6	2Y	0	Output of buffer 2
7	7	GND	-	Ground
8	8	3Y	0	Output of buffer 3
9	9	3A	I	Input of buffer 3
10	10	3 OE	I	Output Enable for buffer 3
11	11	4Y	0	Output of buffer 4
12	12	4A	I	Input of buffer 4
13	13	4 0 E	I	Output Enable for buffer 4
14	14	Vcc	-	Power Supply

FUNCTION TABLE

Inpu	Output	
ŌĒ	Α	Y
L	Н	Н
L	L	L
Н	Х	Z

H=HIGH Logic Level L =LOW Logic Level X=Don't Care Z=High-impedance OFF-state

REV1.0 - MAY 2022 RELEASED --2-

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range, unless otherwise noted*

Par	Symbol	Min.	Max.	Unit			
Supply voltage range			Vcc	-0.5	6.5	V	
Input voltage range (2)			Vı	-0.5	6.5	V	
Voltage range applied to any	output in the high-im	pedance	Vo	-0.5	6.5	V	
or power-off state (2)							
Voltage range applied to any	output in the high or	low state	Vo	-0.5	Vcc+0.5	V	
(2) (3)							
Input clamp current	lıĸ		-50	mA			
Output clamp current	Іок		-50	mA			
Continuous output current	lo		±50	mA			
Continuous current through	√cc or GND				±100	mA	
Junction temperature			TJ	-65	150	°C	
Storage temperature			T _{stg}	-65	150	°C	
Human-body model (HBM)			V(ESD)		±8000		
Electrostatic discharge Machine Model (MM		1)	V (E	ESD)	±500	V	
Junction-to-ambient SOP			Б	эJA	122.2	°C/\\\	
thermal resistance	TSSOP14	TSSOP14			141.2	°C/W	

Stresses above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

REV1.0 - MAY 2022 RELEASED - - 3 -

^{*}The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

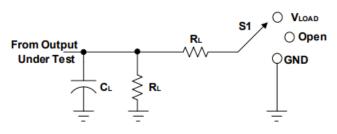
^{*}The value of Vcc is provided in the Recommended Operating Conditions table.

RECOMMENDED OPERATING CONDITIONS

over recommended operating free-air temperature range (TYP values are at TA = +25°C, unless otherwise noted.) (1)

Parameter	Symbol	Conditions	Min.	Max.	Unit	
Cupply voltage	V _{CC}	Operating	1.65	5.5	V	
Supply voltage	V CC	Data retention only	1.5	5.5	V	
		V _{CC} =1.65V to 1.95V	0.65xV _{CC}			
High-level input voltage	ViH	Vcc=2.3V to 2.7V	1.7		\/	
High-level input voltage	VIH	Vcc=3V to 3.6V	2.2		V	
		V _{CC} =4.5V to 5.5V	0.7xVcc			
	V _{IL}	V _{CC} =1.65V to 1.95V		0.15xVcc		
The Teach Confidence		Vcc=2.3V to 2.7V		0.3	V	
Low-level input voltage		V _{CC} =3V to 3.6V		0.4		
		V _{CC} =4.5V to 5.5V		0.15xVcc		
Input voltage	Vı		0	5.5	V	
Output voltage	Vo		0	Vcc	V	
		Vcc=1.8V± 0.15V,2.5V ± 0.2V		20		
Input transition rise or fall	t _r , t _f	V _{CC} =3.3V± 0.3V		10	ns/V	
		Vcc=5V± 0.5V		5		
Operating temperature	TA		-40	+125	°C	

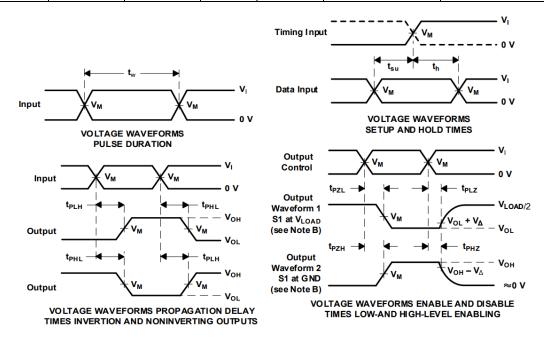
REV1.0 - MAY 2022 RELEASED - - 4 -



ELECTRICAL CHARACTERISTICS

T _A = +25°C, ur										
Paramete	r	Conditions		Vcc		Temp	Min	Тур	Max	Unit
DC ELECTRIC	CAL CHARA	CTERISTICS								
Vон	I _{OH} =	-100µA		1.65V to 5	.5V		Vcc-0.1			
	I _{OH} =	-4mA		1.65V		4000	1.2			
	I _{OH} =	-8mA		2.3V		-40°C	1.9			V
	I _{OH} =	-16mA		3V		To +125°C	2.4			V
	I _{OH} =	-24mA		31		+125 C	2.3			
	I _{OH} =	-32mA		4.5V			3.8			
Vol	I _{OL} =	100μΑ		1.65V to 5	.5V				0.1	
	I _{OL} =	4mA		1.65V		-40°C			0.45	
	I _{OL} =	8mA		2.3V		-40 C			0.3	- V
	I _{OL} =	16mA		3V		+125°C			0.4	
	I _{OL} =	24mA		31		1 123 0			0.55	
	I _{OL} =	32mA		4.5V					0.55	
lı	V	=5.5V or GND		0V to 5.5	δV	+25°C		±0.1	±1	
	<i>I</i>	A or $\overline{\rm OE}$ inputs				-40°C			_	μA
						To +125°C			±5	'
l _{off}		V _I or V _O =5.5V		0V		+125°C		±0.1	±1	
ТОП		V 0 V -3.5 V		OV		-40°C		10.1	±10	μA
loz	,	√ ₀ =0V to 5.5V		3.6V		То				
102						+125°C			10	μA
Icc	V _I =5	$6.5V$ or GND, I_0 =0		1.65V to 5	.5V	+25°C			1	μA
						-40°C To		0.1	10	P** 1
ΔI_{CC}		input at V _{CC} -0.6V		3V to 5.5	5V	+125°C			500	μA
	Other i	nputs at Vcc or GI				l ,				1
	From	То		V _{CC} =1.8V ±0.15V		±0.2V	V _{CC} =3.3V ±0.3V		:=5V .5V	
Parameter				Typ		Typ	Typ			Unit
	(Input)	(Output)		тур		тур	тур		ур	
SWITCHING	CHARACTE	RISTICS								
CL=15pF	T	_			1					
t_{pd}	А	Υ		6.1		3.7	3.9	2	.1	ns
CL=30pF or			1		1	T		-		
tpd	А	Y		8.6		5.3	4.0	2	.9	ns
ten	ŌĒ			9.5		5.8	5.0		.3	ns
tdis			7.4		4.3	4.4	3	.0	ns	
OPERATING	CHARACTI	ERISTICS								
C_{pd}	l '	pation Capacitance	ı		1					
	utput enable	─/ t=1()MHz		18		18	19	2	21	pF
Οι	ıtput disable	d 1 1011112		2		2	2		4	יץ

REV1.0 - MAY 2022 RELEASED -- 5 -

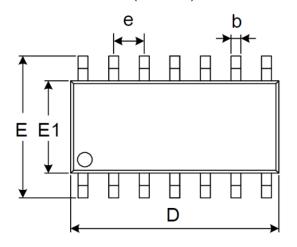

PARAMETER MEASUREMENT INFORMATION

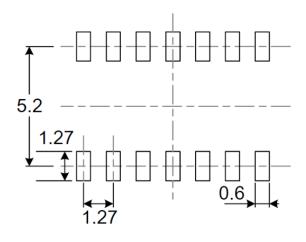
TEST	S1
tplh/tphl	Open
tplz/tpzl	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

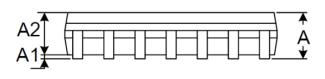
LO	AD	CIR	CU	П

V	Inp	outs	V V		0	-	.,
Vcc	Vı	t _r /t _f	V _M	VLOAD	CL	R∟	VΔ
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	1ΜΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	1ΜΩ	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	15pF	1ΜΩ	0.3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	15pF	1ΜΩ	0.3V

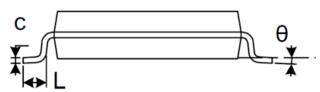
Note:


- A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, ZO = 50 Ω .
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
 - F. t_{PZL} and t_{PZH} are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as $t_{\text{pd.}}$
 - H. All parameters and waveforms are not applicable to all devices.

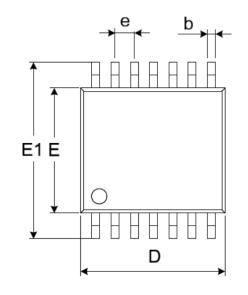

Figure 1. Load Circuit and Voltage Waveforms

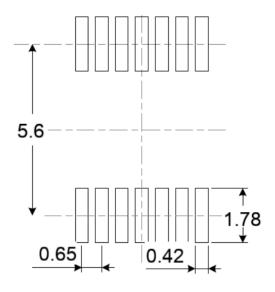

REV1.0 - MAY 2022 RELEASED - - 6 -

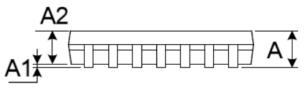
PACKAGE INFORMATION


Dimension in SOP14 (Unit: mm)

RECOMMENDED LAND PATTERN




Cumbal	Millimeters				
Symbol	Min	Max			
Α	1.350	1.750			
A1	0.100	0.250			
A2	1.350	1.550			
b	0.310	0.510			
С	0.100	0.250			
D	8.450	8.850			
е	1.270 BCS				
E	5.800	6.200			
E1	3.800	4.000			
L	0.400	1.270			
θ	0°	8°			


REV1.0 - MAY 2022 RELEASED - - 7 -

QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

Dimension in TSSOP14 (Unit: mm)

RECOMMENDED LAND PATTERN

Or male al	Millime	eters		
Symbol	Min	Max		
Α		1.200		
A1	0.050	0.150		
A2	0.800	1.050		
b	0.190	0.300		
С	0.090	0.200		
D	4.860	5.100		
E	4.300	4.500		
E1	6.250	6.550		
е	0.650 BSC			
L	0.500	0.700		
Н	0.25 TYP			
θ	1°	7°		

REV1.0 - MAY 2022 RELEASED - - 8 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAY 2022 RELEASED - - 9 -