

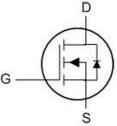
DESCRIPTION

The AM2302 is available in SOT-23S Package.

BVDSS	RDSON	ID
20V	45mΩ	3A

ORDERING INFORMATION

APPLICATION


- Green Device Available
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Advanced High Cell Density Trench Technology

PIN DESCRIPTION

Package Type	Part Number		
SOT-23S	E3S	AM2302E3SR	
SPQ: 3,000pcs/Reel	E90	AM2302E3VSR	
Note	R: Tape & Reel		
Note	V: Halogen free Package		
AiT provides all RoHS products			

1 2 3
SOT-23S

3

Drain

Pin#	Symbol	Function
1	G	Gate
2	S	Source

D

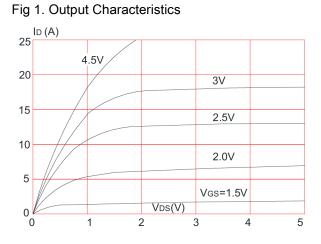
ABSOLUTE MAXIMUM RATINGS

T _A =25°C Unless otherwise noted		
V _{DS} , Drain-Source Voltage		20V
V _{GS} , Gate-Source Voltage		±12V
I_D ⁽¹⁾ , Continuous Drain Current, V _{GS} @ 10V	T _A =25°C	ЗА
	T _A =70°C	1.20A
I _{DM} ⁽²⁾ , Pulsed Drain Current		12A
$P_D^{(3)}$, Total Power Dissipation $T_A=25^{\circ}C$		0.85W
T _J , Operating Junction Temperature Range		-55°C~+150°C
T _{STG} , Storage Temperature Range		-55°C~+150°C
R _{0JA} *, Thermal Resistance Junction-Ambient		162°C/W

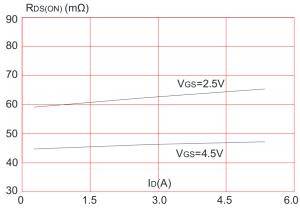
Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

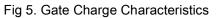
* Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

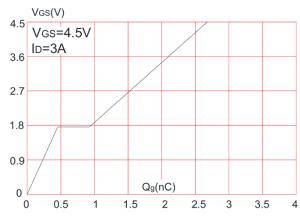
ELECTRICAL CHARACTERISTICS

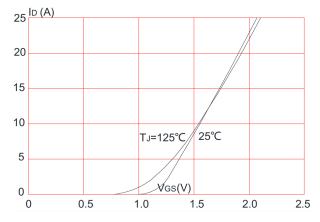

T_A=25°C, unless otherwise specified.

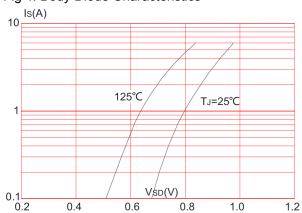
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250µA	20	-	-	V
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 20V, V _{GS} =0V	-	-	1	μA
Gate to Body Leakage Current	lgss	V_{GS} =±12V, V_{DS} = 0V	-	-	±100	nA
On Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_D=250$ uA	0.40	0.70	1	V
Statia Drain Source On Desistence*		V _{GS} =4.5V, I _D =3A	-	45	55	mΩ
Static Drain-Source On-Resistance*	R _{DS (on)}	V _{GS} =2.5V, I _D =2A	-	62	85	
Dynamic Characteristics						
Input Capacitance	Ciss)/10)/_)/0)/	-	184	-	pF
Output Capacitance	Coss	V _{DS} =10V, V _{GS} =0V, f=1MHz	-	38	-	
Reverse Transfer Capacitance	Crss		-	28	-	
Total Gate Charge	Qg		-	2.70	-	nC
Gate-Source Charge	Qgs	V _{DS} =10V, V _{GS} =4.5V	-	0.40	-	
Gate-Drain ("Miller") Charge	Q _{gd}	ID-3A	-	0.50	-	
Switching Characteristics						
Turn-on Delay Time	t _{d(on)}		-	8	-	
Turn-on Rise Time	tr	V _{DS} =10V, I _D =3A,	-	27	-	ns
Turn-off Delay Time	t _{d(off)}	R _{GEN} =3V, V _{GS} =4.5V	-	26	-	
Turn-off Fall Time	t _f		-	33	-	
Drain-Source Diode Characteristics ar	nd Maximun	n Ratings				
Maximum Continuous Drain to					2	^
Source Diode Forward Current	ls	-		-	3	A
Maximum Pulsed Drain to Source		I _{SM} -	-	-	12	А
Diode Forward Current	ISM					
Drain to Source Diode Forward	Vsd	V _{GS} =0V, I _S =3A			1.2	V
Voltage	v SD	vGS-UV, IS-JA		-	1.2	V

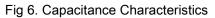

* Pulse Test: PulseWidth≤300µs, Duty Cycle≤0.5%




TYPICAL PERFORMANCE CHARACTERISTICS


Fig 3. On-resistance vs. Drain Current





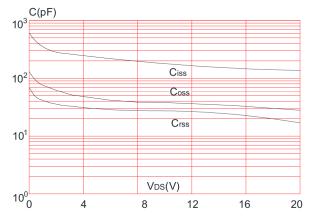

Fig 2. Typical Transfer Characteristics

Fig 4. Body Diode Characteristics

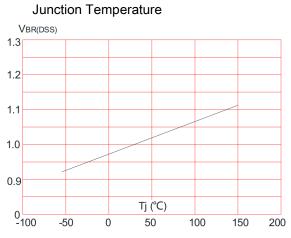


Fig 7. Normalized Breakdown Voltage vs.

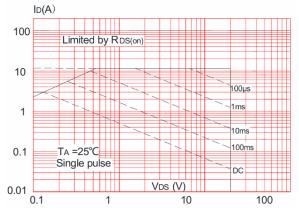
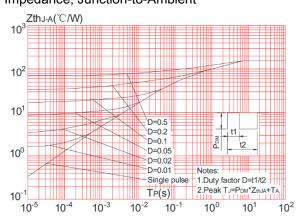
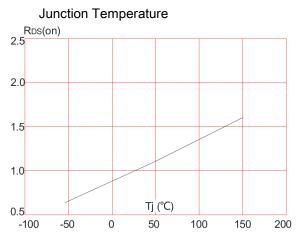
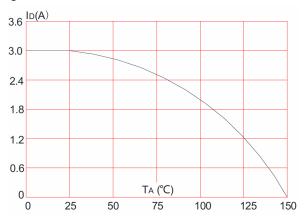
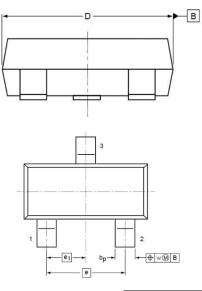
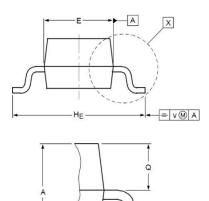



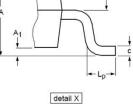
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 8. Normalized on Resistance vs.


Fig 10. Maximum Continuous Drain Current





PACKAGE INFORMATION

Dimension in SOT-23 (Unit: mm)

Symbol	Millimeters (mm)			
Symbol	Min.	Max.		
А	0.900	1.150		
A1	0.010	0.100		
bp	0.300	0.500		
с	0.080	0.150		
D	2.800	3.000		
E	1.200	1.400		
е	1.900 TYP.			
e1	0.950 TYP.			
HE	2.250	2.550		
Lp	0.300	0.500		
Q	0.450	0.550		
v	0.200 TYP.			
w	0.100 TYP.			

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.