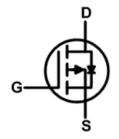
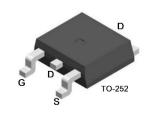
DESCRIPTION

The AM35P10 is available in TO-252 package.

BVDee	RDS	Ē		
BVDSS	V _{GS} =-10V	V _{GS} =-4.5V	ID	
-100V	50mΩ	55mΩ	-35A	


FEATURE


- Improved dv/dt capability
- Low Input Capacitance
- 100% EAS Guaranteed
- Green Device Available

APPLICATION

- Net Working
- Load Switch
- LED Application
- Quick Charge

PIN DESCRIPTION

ORDERING INFORMATION

Package Type		Part Number	
TO-252	D	AM35P10DR	
SPQ: 2500pcs/Tube	U	AM35P10DVR	
Note	U: Tube		
Note	V: Halogen free Package		
AiT provides all RoHS products			

Pin#	Symbol	Function	
1	G	Gate	
2	D	Drain	
3	S	Source	
4	D	Drain	

REV1.0 - JUL 2022 RELEASED - -1-

AM35P10 MOSFET 100V P-CHANNEL MOSFET

ABSOLUTE MAXIMUM RATINGS

T_A=25°C, unless otherwise noted

TA-20 O, UTIIC33 OttiCI WI3C Hoted					
V _{DSS} , Drain-Source Voltage			-100V		
V _{GSS} , Gate-Source Voltage	±20V				
L. Dunin Coursent Continuous(1)	T _A =25°C		-35A		
I _D , Drain Current-Continuous ⁽¹⁾	T _A =100°C		-23A		
I _{DM} , Drain Current-Pulsed ⁽²⁾	-100A				
I _{AS} , Single Pulse Avalanche Current		28A			
E _{AS} , Single Pulse Avalanche Energy ⁽³⁾	392mJ				
P _D , Maximum Power Dissipation ⁽⁴⁾	104W				
T _{STG} , Storage Temperature Range			-55°C~+150°C		
T _J , Operating Junction Temperature Range	-55°	-55°C~+150°C			
R _{θJA} , Maximum Junction-to-Ambient			°C/W		
Reuc , Maximum Junction-to-Case					

The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.
- (2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- (3) The EAS data shows Max. Rating. The test condition is V_{DD} =-25V, V_{GS} =-10V, L=1mH, I_{AS} =-28A
- (4) The power dissipation is limited by 150°C junction temperature

REV1.0 - JUL 2022 RELEASED - - 2 -

ELECTRICAL CHARACTERISTICS

T_A = 25°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
OFF Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =-250μA	-100	-	-	V
Drain-Source Leakage Current	I _{DSS}	V _{DS} = -100V, V _{GS} =0V, T _A =125°C	-	-	-1	μA
Gate-Source Leakage Current	I _{GSS}	V _{GS} =±20V, V _{DS} = 0V	-	-	±100	nA
ON Characteristics			•	•	•	•
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} =V _{DS} , I _{DS} =-250uA	-1.2	-1.8	-2.5	V
Static Drain-Source On-Resistance		V _{GS} =-10V, I _{DS} =-10A	-	44	50	mΩ
	R _{DS(ON)}	V _{GS} =-4.5V, I _{DS} =-8A	-	48	55	
Forward Transconductance	gfs	V _{DS} =-10V, I _D =-10A	-	32	-	S
Dynamic Characteristics						
Input Capacitance	Ciss	V _{DS} =-20V, V _{GS} =0V,	-	6500	-	pF
Output Capacitance	Coss		-	225	-	
Reverse Transfer Capacitance	Crss	f=1MHz	-	130	-	
Switching Characteristics						
Turn-on Delay Time	T _{d(on)}	\/ 50\/ I 44A	-	21	-	ns
Rise Time	tr	V _{DS} =-50V, I _D =-14A,	-	32	-	
Turn-Off Delay Time	$T_{d(off)}$	R _{GEM} = 3.3Ω ,	-	125	-	
Fall Time	t f	V _{GS} =-10V	-	64.2	-	
Total Gate Charge	Qg	\/ - 00\/ - 444	-	90	-	
Gate to Source Charge	Q _{gs}	V _{DS} =-80V, I _{DS} =-14A,	-	18.2	-	nC
Gate to Drain "Miller" Charge	Q_{gd}	V _{GS} =-10V	-	14.5	-	
Switching Characteristics						
Drain-Source Diode Forward Voltage(2)	V _{SD}	V _{GS} =0A, I _S =-1A	-	-	-1.2	V
Continuous Source Current ⁽¹⁾⁽³⁾	Is	$V_G=V_D=0V$,	-	-	-35	Α
Pulsed Source Current(1)(3)	Isм	Force Current	-	-	-90	Α
	L	L	L	L	I	l

⁽¹⁾ The data tested by surface mounted on a 1 inch2 FR-4 board with 2OZ copper.

REV1.0 - JUL 2022 RELEASED - - 3 -

⁽²⁾ The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

⁽³⁾ The data is theoretically the same as ID and IDM, in real applications, should be limited by total power dissipation

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Typical Output Characteristics

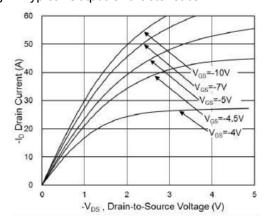


Fig 3. Typical S-D Diode Forward Voltage

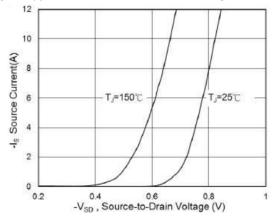


Fig 5.Normalized $V_{\text{GS(th)}}$ vs.T_J

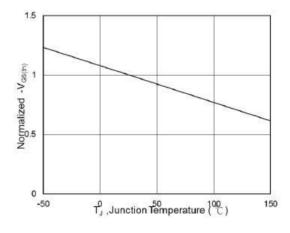


Fig 2. On-Resistance vs. G-S Voltage

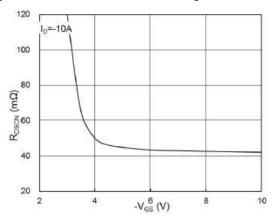


Fig 4. Gate-Charge Characteristics

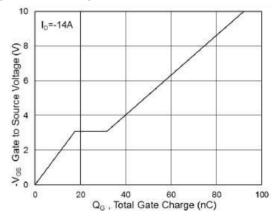
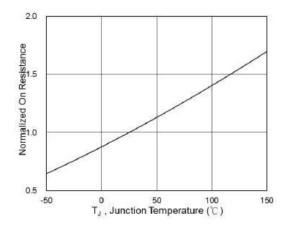



Fig 6. Normalized RDSON vs. TJ

REV1.0 - JUL 2022 RELEASED - - 4 -

Fig 7. Capacitance

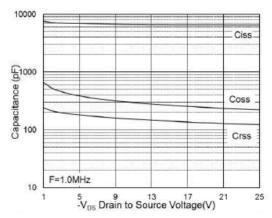


Fig 8. Safe Operating Area

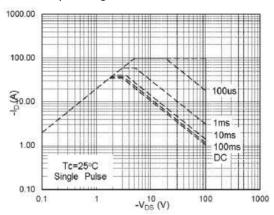


Fig 9.Normalized Maximum Transient Thermal Impedance

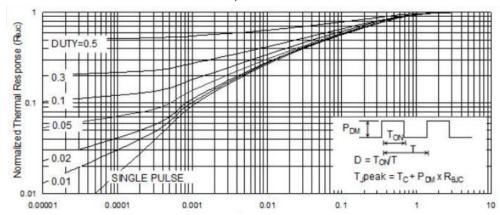
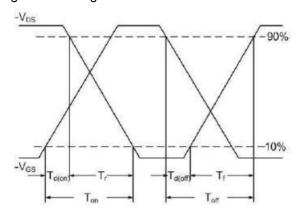
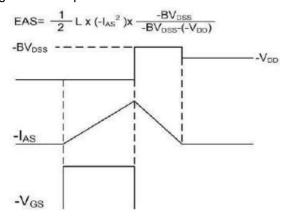
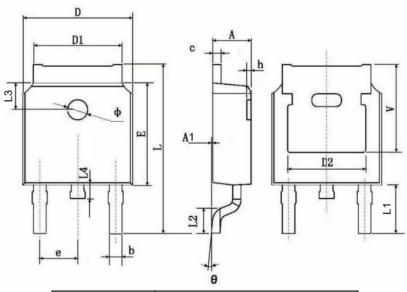


Fig 10.Switching Time Waveform


Fig 11.Unclamped Inductive Waveform

REV1.0 - JUL 2022 RELEASED - - 5 -

PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Or make al	Millimeters			
Symbol	Min.	Max.		
Α	2.200	2.400		
A1	0.000	0.127		
b	0.660	0.860		
С	0.460	0.580		
D	6.500	6.700		
D1	5.100	5.460		
D2	0.486TYP			
Е	6.000	6.200		
е	2.186	2.386		
L	9.800	10.400		
L1	2.900TYP			
L2	1.400	1.700		
L3	1.600TYP			
L4	0.600	1.000		
Ф	1.100	1.300		
θ	0	8		
h	0.000	0.300		
V	5.350TYP			

REV1.0 - JUL 2022 RELEASED - - 6 -

AM35P10 MOSFET 100V P-CHANNEL MOSFET

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUL 2022 RELEASED - - 7