

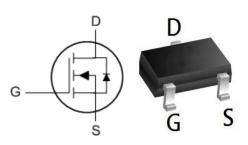
DESCRIPTION

The AM6003 is available in SOT-23 Package

BVDSS	RDSON	ID
60V	78mΩ	3A

FEATURE

• Super Low Gate Charge


PIN DESCRIPTION

- $R_{DS(ON)} = 78m\Omega(Typ.) @V_{GS} = 10V$
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

APPLICATION

 Small Power Switching and Load Switching applications

ORDERING INFORMATION

SOT-23

Package Type	Part Number	
SOT-23		AM6003E3R
SPQ: 3,000pcs/Reel	E3	AM6003E3VR
	V: Halogen free Package	
Note	R: Tape & Reel	
AiT provides all RoHS products		

Pin #	Symbol	Description
1	G	Gate
2	S	Source
3	D	Drain

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	60	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current, V _{GS} @ 10V ⁽¹⁾	ID@TA=25°C	3.0	А
Continuous Drain Current, V _{GS} @ 10V ⁽¹⁾	ID@TA=70°C	1.8	А
Pulsed Drain Current ⁽²⁾	I _{DM}	9.2	А
Total Power Dissipation ⁽³⁾	P _D @T _A =25°C	1	W
Storage Temperature Range	Tstg	-55 to 150	C°
Operating Junction Temperature Range	TJ	-55 to 150	C°
Thermal Resistance Junction-Ambient (1)	D	125	°000
Thermal Resistance Junction-Case (1)	Reja	80	°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

(2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

(3) The power dissipation is limited by 150° C junction temperature.

ELECTRICAL CHARACTERISTICS

$T_A = 25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	60	-	-	V
BVDSS Temperature Coefficient	∆BV _{DSS} /∆ TJ	Reference to 25°C,I _D =1mA	-	0.054	-	V/°C
	Preven	V _{GS} =10V, I _D =2A		78	105	mΩ
Static Drain-Source On-Resistance ⁽²⁾	sistance ⁽²⁾ R _{DS(ON)} V _{GS} =4.5V, I _D =1A	-	85	110		
Gate Threshold Voltage	VGS (th)	V _{GS} =V _{DS} , I _D =250uA	1.2	-	2.5	V
V_{GS} (th) Temperature Coefficient	${}^{\vartriangle}V_{GS}$ (th)	VGS-VDS, ID -2000A	-	-4.96	-	mV/°C
Drain Source Lookage Current	1	V _{DS} =48V , V _{GS} =0V , T _J =25°C	-	-	1	uA
Drain-Source Leakage Current	IDSS	V_{DS} =48V , V_{GS} =0V , T_{J} =55°C	-	-	5	
Gate-Source Leakage Current	Igss	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
Forward Transconductance	gfs	V _{DS} =5V, I _D =2A	-	13	-	S
Total Gate Charge (4.5V)	Qg		-	5	7.0	nC
Gate-Source Charge	Q _{gs}	V _{DS} =48V, V _{GS} =4.5V, I _D =2A	-	1.68	2.4	
Gate-Drain Charge	Q_{gd}		-	1.9	2.7	
Turn-On Delay Time	T _{d(on)}		-	1.6	3.2	
Rise Time	Tr	V_{DD} =30V , V_{GS} =10V ,	-	7.2	13	ns
Turn-Off Delay Time	T _{d(off)}	R _G =3.3Ω, I _D =2A	-	25	50	
Fall Time	T _f		-	14.4	28.8	
Input Capacitance	Ciss		-	511	715	
Output Capacitance	Coss	V _{DS} =15V, V _{GS} =0V, f=1MHz	-	38	53	pF
Reverse Transfer Capacitance	C _{rss}		-	25	35	
Diode Characteristics			•	•		
Continuous Source Current (1)(4)	ls		-	-	2.3	А
Pulsed Source Current (2)(4)	I _{SM}	$V_G=V_D=0V$, Force Current	-	-	9.2	А
Diode Forward Voltage (2)	V _{SD}	V _{GS} =0V , I _S =1A , T _J =25°C	-	-	1.2	V
Reverse Recovery Time	trr	l⊧=2A , dl/dt=100A/µs ,	-	9.7	-	nS
Reverse Recovery Charge	Qrr	TJ=25℃	-	5.8	-	nC

(1) The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

(2) The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

(4) The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

TYPICAL PERFORMANCE CHARACTERISTICS

Fig 1. Typical Output Characteristics

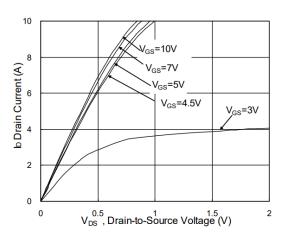


Fig 3. Forward Characteristics of Reverse

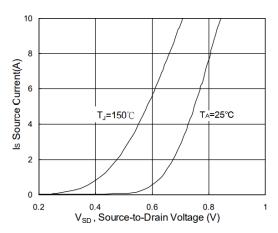


Fig 5. Normalized V_{GS} (th) vs T_J

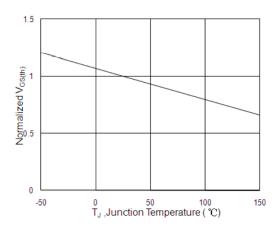


Fig 2. On-Resistance vs Gate-Source

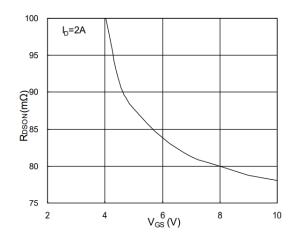


Fig 4. Gate-Charge Characteristics

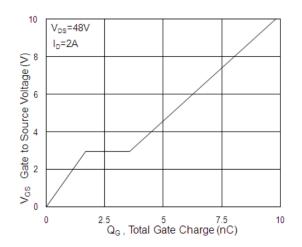
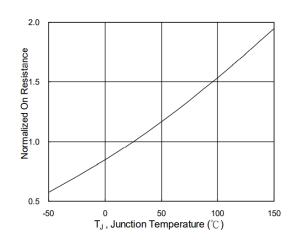
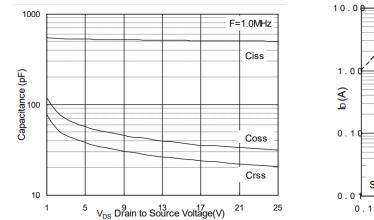
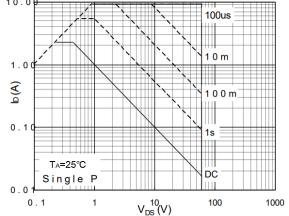
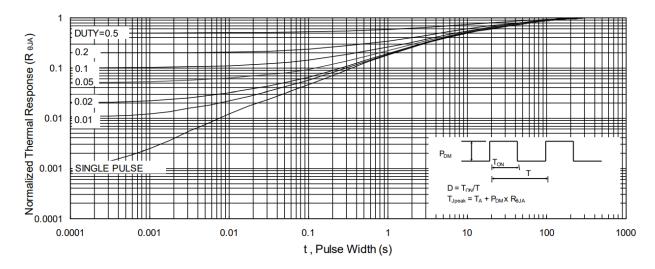
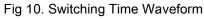
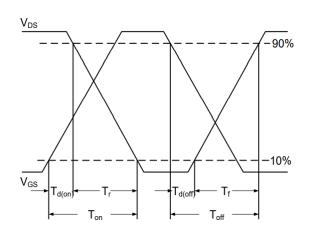




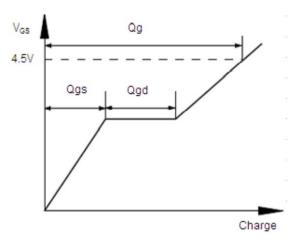
Fig 6. Normalized $R_{\text{DSON}} \, vs \, T_{\text{J}}$

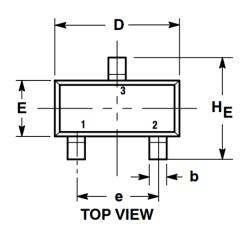


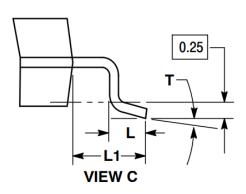

Fig 7. Capacitance

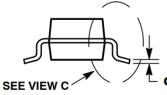




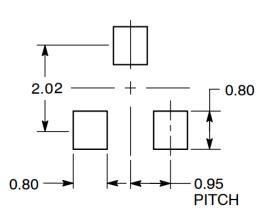





PACKAGE INFORMATION


Dimension in SOT-23 (Unit: mm)

A1



SIDE VIEW

END VIEW

RECOMMENDED SOLDERING FOOTPRINT

Symbol	Min	Max	
А	0.90	1.15	
A1	0.00	0.10	
b	0.30	0.50	
С	0.08	0.15	
D	2.80	3.00	
E	1.20	1.40	
е	1.80	2.00	
L	0.30	0.50	
L1	0.55 REF		
HE	2.25	2.55	
θ	0 °	8 °	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.