DESCRIPTION

The AO1369S is an OP Amp with shutdown function. The AO1369S has a high gainbandwidth product of 14.5KHz, a slew rate of 6V/ms, and a quiescent current of 600nA/amplifier at 5V.

The AO1369S is designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common mode voltage range includes ground, and the maximum input offset voltage is 3mV for AO1369S.

AO1369S is specified over the extended industrial temperature range (-40°C to +125°C).

The operating range is from 1.4V to 5.5V.

The AO1369S is available in SOT-26 and SC70-6 Packages.

FEATURE

- Single-Supply Operation from +1.4V ~ +5.5V
- Rail-to-Rail Input / Output
- Gain-Bandwidth Product: 14.5KHz (Typ)
- Low Input Bias Current: 1pA (Typ)
- Low Offset Voltage: 3mV (Max)
- Quiescent Current: 600nA per Amplifier (Typ)
- Operating Temperature: -40°C ~ +125°C
- Embedded RF Anti-EMI Filter

APPLICATION

- ASIC Input or Output Amplifier
- Sensor Interface
- Medical Communication
- **Smoke Detectors**
- **Audio Output**
- Piezoelectric Transducer Amplifier
- **Medical Instrumentation**
- Portable Systems

ORDERING INFORMATION

Package Type	Part Number		
SOT-26	E6	AO1369SE6R-X	
SPQ: 3,000pcs/Reel	E6	AO1369SE6VR-X	
SC70-6	C6	AO1369SC6R-X	
SPQ: 3,000pcs/Reel		AO1369SC6VR-X	
	X: Active High or Low		
	H = High		
Note	L = Low		
	V: Halogen free Package		
	R: Tape & Reel		
AiT provides all RoHS products			

TYPICAL APPLICATION

www.ait-ic.com

PIN DESCRIPTION

AiT Semiconductor Inc.

AO1369S

www.ait-ic.com OP AMPLIFIER 600nA 14.5KHz SINGLE CMOS R-R OPAMP W/ SHUTDOWN & RF FILTER

5	5	ENH/ENL	Enable, H=Active High, L=Active Low
6	6	VDD	Positive Power Supply Input

ABSOLUTE MAXIMUM RATINGS

Power Supply Voltage (V _{DD} to V _{SS})		-0.5V ~ +7.5V
Analog Input Voltage (IN+ or IN-)		V _{SS} -0.5V ~ V _{DD} +0.5V
PDB Input Voltage		V _{SS} -0.5V ~ +7V
Operating Temperature Range		-40°C ~ +125°C
Junction Temperature		+160°C
Storage Temperature Range		-55°C ~ +150°C
Lead Temperature (soldering, 10sec)		+260°C
Package Thermal Resistance θ _{JA}	SOT-26	190°C/W
(T _A =+25°C)	SC70-6	333°C/W
ECD Comments life.	НВМ	6KV
ESD Susceptibility	MM	300V

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

600nA 14.5KHz SINGLE CMOS R-R OPAMP W/ SHUTDOWN & RF FILTER

ELECTRICAL CHARACTERISTICS

 V_S = +5V, R_L = 1M Ω connected to $V_S/2$, and V_{OUT} = $V_S/2$, unless otherwise noted

Symbol	Conditions	Тур.	Min.	Max.	Unit
•		•			
Vos	$V_{CM} = V_S/2$	0.4	-	3	mV
Ι _Β	-	1	-	-	pА
los	-	1	-	-	pА
V _{CM}	V _S = 5.5V	-0.1 to +5.6	-	-	V
0	$V_S = 5V$, $V_{CM} = -0.1V$ to 2.5V	78	66	-	- dB
OMRR	$V_S = 5V$, $V_{CM} = -0.1V$ to 5.1V	84	67	-	
	V_S =1.4V, R_L = 50k Ω , V_O = V_S -0.1V	86	75	-	٩D
A _{OL}	$V_S=5V, R_L = 50k\Omega,$ $V_O = V_S-0.1V$	93	84	-	dB
ΔV _{OS} /Δ _T	-	2.5	-	-	μV/°C
V _{OH}	V =4.4V D = 50k0	1.395	1.390	-	V
Vol	VS=1.4V, RL = 50K12	4.5	-	10	mV
Vон		4.997	4.990	-	V
Vol	Vs=5V, R∟ = 50KΩ	3.5	-	10	mV
I _{SOURCE}		20	-	-	mA
I _{SINK}	$R_L = 10\Omega$ to $V_S/2$	20	-	-	mA
-1					
		1.4	-	-	V
_		5.5	-	-	V
P _{SRR}	$V_S = +1.4V \text{ to } +5.5V,$ $V_{CM} = +0.5V$	80	77	-	dB
ΙQ		600	-	1	nA
I _{Q_Off}		54			nA
: 100pF)					
	•				
G _{BP}		14.5	-	-	KHz
	Vos IB Ios VcM CMRR AOL ΔVos/Δτ Voh Vol Isource Isink Psrr IQ IQ_off		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \textbf{Symbol} & \textbf{Conditions} & \textbf{Typ.} & \textbf{Min.} \\ \hline \hline \textbf{V}_{OS} & \textbf{V}_{CM} = \textbf{V}_{S}/2 & 0.4 & - \\ \hline \textbf{I}_{B} & - & 1 & - \\ \hline \textbf{I}_{OS} & - & 1 & - \\ \hline \textbf{V}_{CM} & \textbf{V}_{S} = 5.5 \textbf{V} & to & - \\ \hline \textbf{+5.6} & & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 1.4 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 1.4 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 1.4 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 5 \textbf{V}, & 0.4 & - \\ \hline \textbf{V}_{S} = 1.4 \textbf{V}, & 0.4 & - $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TYPICAL PERFORMANCE CHARACTERISTICS

Fig.1 Large Signal Inverting Pulse Response

Fig.2 Large Signal Non-Inverting Pulse Response

Time(10ms/div)

Fig.3 Small Signal Inverting Pulse Response

Fig.4 Small Signal Non-Inverting Pulse Response

Fig.5 No Phase Reversal

Fig.6 Output Settling Time

Time(1ms/div)

AO1369S

OP AMPLIFIER

600nA 14.5KHz SINGLE CMOS R-R OPAMP W/ SHUTDOWN & RF FILTER

BLOCK DIAGRAM

DETAILED INFORMATION

The AO1369S op amp is unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the AO1369S packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

The AO1369S operates from a single 1.4V to 5.5V supply or dual $\pm 0.7V$ to $\pm 2.75V$ supplies. For best performance, a $0.1\mu F$ ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors.

Low Supply Current

The low supply current (typical 600nA per channel) of the AO1369S will help to maximize battery life. AO1369S is ideal for battery powered systems.

Operating Voltage

The AO1369S operates under wide input supply voltage (1.4V to 5.5V). In addition, all temperature specifications apply from -40°C to +125°C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime.

Rail-to-Rail Input

The input common-mode range of AO1369S extends 100mV beyond the supply rails (Vss-0.1V to Vpp+0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range.

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of AO1369S can typically swing to less than 50mV from supply rail in light resistive loads (> $50k\Omega$).

Capacitive Load Tolerance

The AO1369S is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider first, using a small resistor in series with the amplifier's output and the load capacitance and reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 1. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

Figure 1. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

www.ait-ic.com 600nA 14.5KHz SINGLE CMOS R-R OPAMP W/ SHUTDOWN & RF FILTER

The circuit in Figure 2 is an improvement to the one in Figure 1. RF provides the DC accuracy by feedforward the V_{IN} to R_L. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F. This in turn will slow down the pulse response.

Figure 2. Indirectly Driving a Capacitive Load with DC Accuracy

Differential Amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 3. shown the differential amplifier using AO1369S.

Figure 3. Differential Amplifier

$$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{IN} - \frac{R_2}{R_1} V_{IP} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{REF}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{OUT} = \frac{R_2}{R_1} (V_{IP} - V_{IN}) + V_{REF}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 4. The DC gain is defined by -R2/R1. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

Figure 4. Low Pass Active Filter

Instrumentation Amplifier

The triple AO1369S can be used to build a three-opamp instrumentation amplifier as shown in Figure 5. The amplifier in Figure 5 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.

Figure 5. Instrument Amplifier

PACKAGE INFORMATION

Dimension in SOT23-6 (Unit: mm)

Symbol	MILLIM	IETERS		
Symbol	Min.	Max.		
Α	1.050	1.250		
A1	0.000	0.100		
A2	1.050	1.150		
b	0.300	0.500		
С	0.100	0.200		
D	2.820	3.020		
Е	1.500	1.700		
E1	2.650	2.950		
е	0.950 BSC			
e1	1.900 BSC			
L	0.300	0.600		
θ	0°	8°		

AiT Semiconductor Inc.

www.ait-ic.com

Dimension in SC70-6 (Unit: mm)

Symbol	MILLIM	ETERS	
Symbol	Min.	Max.	
А	0.900	1.100	
A1	0.000	0.100	
A2	0.900	1.000	
b	0.150	0.350	
С	0.080	0.150	
D	2.000	2.200	
E	2.150	2.450	
E1	1.150	1.350	
е	0.650 TYP		
e1	1.200	1.400	
L	0.260	0.460	
L1	0.525 REF		
θ	0°	8°	

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

OP AMPLIFIER