DESCRIPTION

The AL1G00 single 2-input positive-NAND gate is designed for 1.65V to 5.5V Vcc operation.

The AL1G00 performs the Boolean function $Y=\overline{A}*\overline{B}$ or $Y=\overline{A}+\overline{B}$ in positive logic. The AL1G00 is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

AL1G00 operates over an ambient temperature range of -40 $^{\circ}$ C to +125 $^{\circ}$ C.

The AL1G00 is available in SOT25 and SC70-5 packages.

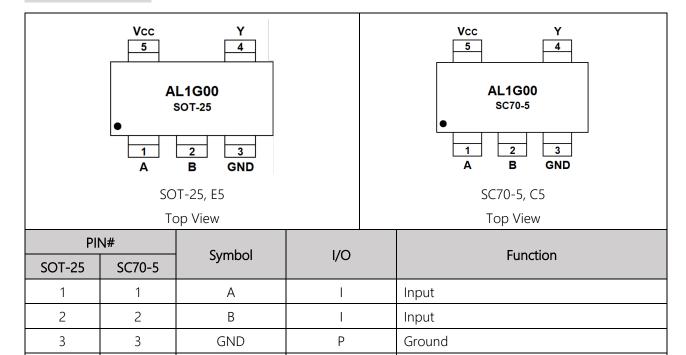
ORDERING INFORMATION

Package Type	Part Number			
SOT-25	FF	AL1G00E5R		
SPQ: 3,000pcs/Reel	E5	AL1G00E5VR		
SC70-5	C5	AL1G00C5R		
SPQ:3,000pcs/Reel	CS	AL1G00C5VR		
Note	V: Halogen free Package R: Tape & Reel			
AiT provides all RoHS products				


FEATURES

- Operating Range: 1.65V to 5.5V
- Low Power Consumption: 1μA (Max).
- Operating Temperature Range: -40°C to +125°C
- Input Accept Voltage to 5.5V
- High Output Drive: ±24mA at V_{CC}=3.0V
- I_{off} Supports Partial-Power-Down Mode Operation.

APPLICATION


- Enable or disable a digital signal
- Controlling an indicator LED
- Translation between communication modules and system controllers
- Active Noise Elimination
- Bar Code Scanner
- Blood Pressure Monitor
- CPAP Machine
- Fingerprint identification
- Network attached storage (NAS)

LOGIC DIAGRAM

REV1.0 - SEP 2024 RELEASED - - 1 -

PIN DESCRIPTION

0

Ρ

Output

Power Pin

ABSOLUTE MAXIMUM RATINGS

4

5

4

5

over operating free-air temperature range (unless otherwise noted)

Υ

 V_{CC}

over operating free all temperature range (afficis otherwise noted)	
V _{CC} , Supply Voltage Range	-0.5V ~ + 6.5V
V _I , Input Voltage Range ⁽¹⁾	-0.5V ~ + 6.5V
V _O , Voltage Range Applied to Any Output in The High-Impedance or Power-Off State ⁽¹⁾	-0.5V ~ + 6.5V
V _O , Voltage Range Applied to any Output in the High or Low State ^{(1) (2)}	-0.5V ~ V _{CC} +0.5V
I _{IK} , Input Clamp Current V _I <0	-50mA
I _{OK} , Output Clamp Current V _O <0	-50mA
I _O , Continuous Output Current	±50mA
I_{O} , Continuous Current through V_{CC} or GND	±100mA
T _J , Junction Temperature	-65°C ~ +150°C
T _{STG} , Storage Temperature	-65°C ~ +150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (2) The value of V_{CC} is provided in the Recommended Operating Conditions table.

RECOMMENDED OPERATING CONFITIONS

over recommended operating free-air temperature range. Typical values are at T_A=+25°C, unless otherwise noted.

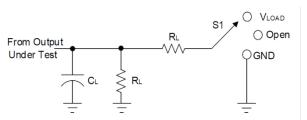
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit	
Cupply Voltage	V _{CC}	Operating	1.65	-	5.50		
Supply Voltage		Data Retention only	1.50	-	-5.50	- - V	
		$V_{CC} = 1.65 \text{ V} \sim 1.95 \text{ V}$	0.65x V _{CC}	-	1		
High-Level Input	\/	$V_{CC} = 2.3V \sim 2.7 V$	1.70	-	-		
Voltage	V_{IH}	$V_{CC} = 3 V \sim 3.6 V$	2	-	-		
		$V_{CC} = 4.5 \text{ V} \sim 5.5 \text{ V}$	0.70x V _{CC}	-	-		
		$V_{CC} = 1.65 \text{ V} \sim 1.95 \text{ V}$	-	-	0.15x V _{CC}		
Low Lovel Input Voltage	V _{IL}	$V_{CC} = 2.3V \sim 2.7 V$	-	-	0.30	V	
Low-Level Input Voltage		$V_{CC} = 3 V \sim 3.6 V$	-	-	0.40	V	
		$V_{CC} = 4.5 \text{ V} \sim 5.5 \text{ V}$	-	-	0.15x V _{CC}		
Input Voltage	V_{l}	1	0	-	5.50	V	
Output Voltage	Vo	1	0	-	V_{CC}	V	
Input Transition Rise or	t _r , t _f	$V_{CC} = 1.8 V \pm 0.15 V$, $2.5 V \pm 0.2 V$	-	-	20	0.7	
Fall		$V_{CC} = 3.30 \text{ V} \pm 0.3 \text{ V}$	-		10	ns/V	
		$V_{CC} = 5 V \pm 0.5V$	-		5		
Operating Temperature	T _A		-40		+125	°C	
Junction-to-Ambient	D			SOT-25	214.70	°C ///	
Thermal Resistance RejA		·		SC70-5	273.80	°C/W	

ESD RATINGS

Parameter	Symbol	Min	Unit	
Human-Body Model (HBM)	V Flootypotatic discharge	±8000	\/	
Machine Model (MM)	V _(ESD) Electrostatic discharge	±500	V	

^{*}All unused inputs of the device must be held at Vcc or GND to ensure proper device operation.

REV1.0 - SEP 2024 RELEASED - - 3 -


ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range. Typical values are at $T_A = +25$ °C, unless otherwise noted.

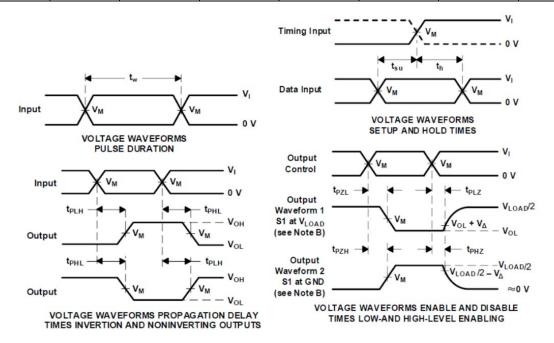
Parar	neter		ns		M	in	Тур.	Max	Unit	
DC CHARAC	TERISTICS									
		$I_{OH} = -100 \mu$ $V_{CC} = 1.65 \sim 5$	•				~0.1	-	-	
		$I_{OH} = -4mA$				12	20	-	-	
V	ЭH	$I_{OH} = -8$ mA, $V_{CC} = 2.3$ V $I_{OH} = -16$ mA, $V_{CC} = 3$ V		-40°C ~ +125°C		1.9	90	-	-	V
						2.4	10			
		$I_{OH} = -24 \text{m/s}$	4, V _{CC} =3V			2.5	30	-	-	
		$I_{OH} = -32 \text{m/s}$	A, V _{CC} =4.5V			3.8	30	-	-	
		$I_{OH} = 100 \mu A$ $V_{CC} = 1.65 \sim 5$				-		-	0.10	
		$I_{OH} = 4mA$				_		-	0.45	
V)I	$I_{OH} = 8mA$,		-40°C	~ +125℃	_		-	0.30	V
	J.	$I_{OH} = 16 \text{mA},$				_		-	0.40	•
		$I_{OH} = 24 \text{mA}$				_		-	0.55	
		$I_{OH} = 32 \text{mA}$				_		-	0.55	
	A or B		$V_1 = 5.5V$ or GND,		25℃			±0.10	±1	^
I _I	Inputs	V _{CC} =0V~5.5	δV	-40°C	~ +125°C			-	±5	μΑ
ı		\\ or\\ - F F\\ \\ -0\\		+	+25°C -40°C ~ +125°C			±0.10	±1	μΑ
I _c	ff	$V_1 \text{ Of } V_0 = 5$	V_1 or $V_0 = 5.5V$, $V_{CC} = 0V$					-	±10	
1		$V_1 = 5.5V \text{ or }$	$V_1 = 5.5V \text{ or GND, } I_0 = 0,$		+25°C			0.10	1	^
ار ار	C	V _{CC} =1.65V~	5.5V	-40°C ~ +125°C		-		-	10	μΑ
Δl _{CC}			at V_c C-0.6V, ts at V_{cc} or $SV \sim 5.5V$	_{CC} or -40°C ~ +125°C		-		-	500	μΑ
AC CHARAC	_		10.0					_	1	
Parameter	Symbol		nditions		Temp		Min	Тур.	Max	Unit
		$V_{CC} = 1.8V \pm 0.15V$			-40°C ~ +		-	21	-	
ropagation	t _{pd}	$V_{CC} = 2.5V \pm 0.2V$ $C_L = 30pF, R$	$C_L=30pF, R_L$	=500Ω			-	7.80	-	ns
Delay	Сра	$V_{CC} = 3.3V \pm 0.3V$	$C_L = 50 pF, R_L$	=500Ω	-40°C ~ +	125°C	-	5.70	-	
		$V_{CC}=5V\pm0.5V$	$C_L = 50 pF, R_L$	=500Ω	-40°C ~ +	125°C	-	4.20	-	
nput Capacitance	Ci	V _{CC} =3.3V	$V_{I}=V_{CC}$ or G		+25°(1	4	-	рF
		$V_{CC} = 1.8V \pm 0.15V$,					21		
Power Dissipation		V _{CC} =2.5V±0.2V	(10) 41 1		0.50	- 22		22	-	
	C_{pd}	V _{CC} =3.3V±0.3V	f=10MHz		+25°C	-	-	22	-	pF
Capacitance		$V_{CC}=5V\pm0.5V$	1				-	25	_	

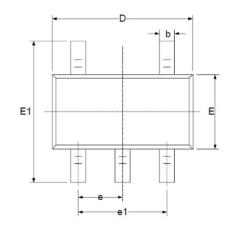
REV1.0 - SEP 2024 RELEASED - - 4 -

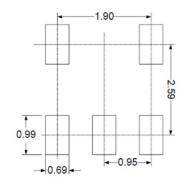
PARAMETER MEASUREMENT INFORMATION

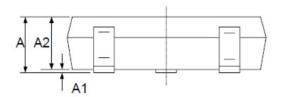
TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PIZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

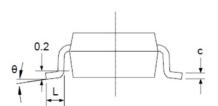
V	In	puts	VM VIOAD		C	D	\/A
V _{CC}	VI	tr/tf	VIVI	V_{LOAD}	J	R_L	VΔ
1.8V±0.15V	V _{CC}	≤2ns	V _{cc} /2	2 x V _{CC}	30pF	1kΩ	0.15V
2.5V±0.2V	V _{CC}	≤2ns	V _{cc} /2	2 x V _{CC}	30pF	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.5V	V _{CC}	≤2.5ns	V _{CC} /2	2 x V _{CC}	50pF	500Ω	0.3V



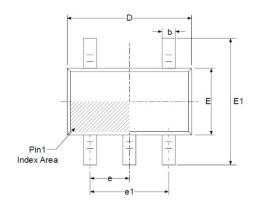

Fig 1. Load Circuit and Voltage Waveforms

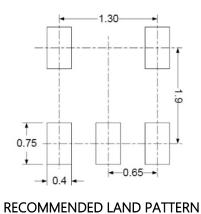

- (B) Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- (C) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- (D) The outputs are measured one at a time, with one transition per measurement.
- (E) Since this device has open-drain outputs, t_{PLZ} and $t_{PZ}L$ are the same as $t_{pd.}$
- (F) t_{PZL} is measured at $V_{\text{M.}}$
- (G) t_{PLZ} is measured at V_{OL} + V_{Δ} .
- (H) All parameters and waveforms are not applicable to all devices.


REV1.0 - SEP 2024 RELEASED - - 5 -

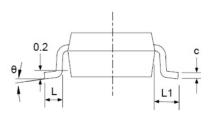

PACKAGE INFORMATION

Dimension in SOT-25 (Unit: mm)




RECOMMENDED LAND PATTERN

Cymahal	Millim	neters	
Symbol	Min	Max	
А	1.050	1.250	
A1	0.000	0.100	
A2	1.050	1.150	
b	0.300	0.500	
С	0.100	0.200	
D	2.820	3.020	
E	1.500	1.700	
E1	2.650	2.950	
е	0.950 BSC.		
e1	1.800	2.000	
L	0.300	0.600	
θ	0°	8°	


REV1.0 - SEP 2024 RELEASED - - 6 -

Dimension in SC70-5 (Unit: mm)

A A2 A1

Cymahal	Millim	neters		
Symbol	Min	Max		
А	0.900	1.100		
A1	0.000	0.100		
A2	0.900	1.000		
b	0.150	0.350		
С	0.080	0.150		
D	2.000	2.200		
Е	1.150	1.350		
E1	2.150	2.450		
е	0.6950 BSC.			
e1	1.300 BSC.			
L	0.260 0.460			
L1	0.525			
θ	0° 8°			

REV1.0 - SEP 2024 RELEASED - - 7

AL1G00
LOGIC
SINGLE 2-INPUT POSITIVE-NAND GATE

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - SEP 2024 RELEASED - - 8 -