DESCRIPTION

The AM50N06 is available in PDFN8(5x6) Package.

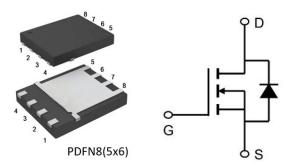
VDSS	RDSON	15
VDSS	V _{GS} =10V TYP.	ID
60V	12mΩ	50A

APPLICATION

- Load Switch
- PWM Application
- Power management

MECHANICAL DATA

- Case: Molded plastic
- Mounting Position: Any
- Molded Plastic: UL Flammability Classification
 Rating 94V-0
- Lead free in compliance with EU RoHS
 2011/65/EU directive
- Solder bath temperature 275°C maximum,10s per JESD 22-B106


ORDERING INFORMATION

Package Type	Part Number		
PDFN8(5x6)	D 10	AM50N06PJ8R	
SPQ: 5,000pcs/Reel	PJ8	AM50N06PJ8VR	
Note	R: Tape & Reel		
Note	V: Halogen free Package		
AiT provides all RoHS products			

FEATURE

- Fast Switching
- Low on Resistance
- Low Gate Charge
- 100% Single Pulse Avalanche Energy Test

PIN DESCRIPTION

Pin#	Symbol	Function
1,2,3	S	Source
4	G	Gate
5,6,7,8	D	Drain

REV1.0 - OCT 2024 RELEASED - -1-

AM50N06

ABSOLUTE MAXIMUM RATINGS

Tc=25°C, unless otherwise Noted

16 20 G, dilloco otherwise rioted	
V _{DS} , Drain-Source Voltage	60V
V _{GS} , Gate-Source Voltage	±20V
I _D , Continue Drain Current	50A
I _{DM} ∗, Pulsed Drain Current	200A
E _{AS} , Single Pulsed Avalanche Energy	80mJ
P _D , Power Dissipation	75W
Reuc, Thermal Resistance, Junction to Case	2°C/W
R _{0JA} , Thermal Resistance, Junction to Ambient	62°C/W
T _J , Operating Temperature Range	+150°C
T _{STG} , Storage Temperature Range	-55°C~+150°C

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

REV1.0 - OCT 2024 RELEASED -- 2 -

^{*}Pulse test 300us pulse width, 2% duty cycle.

ELECTRICAL CHARACTERISTICS

T_C = 25°C, unless otherwise Noted

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250μA	60	-	-	V
Drain-Source Leakage Current	I _{DSS}	V _{DS} = 60V, V _{GS} =0V	-	-	1	μΑ
Gate Leakage Current	I _{GSS}	V _{DS} = 0V, V _{GS} =±20V	-	-	±100	nA
Drain-Source On- State Resistance	Б	V _{GS} =10V, I _D =30A	-	12	17	mΩ
Diam-Source On- State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =20A	-	16	25	
Gate-Source Threshold Voltage	V _{GS (th)}	V _{DS} =V _{GS} , I _D =250uA	1	-	2.50	V
Input Capacitance	Ciss	-V _{DS} = 25V, V _{GS} =0V, -f=1MHz	-	2030	-	pF
Output Capacitance	Coss		1	130	-	
Reverse Transfer Capacitance	Crss		ı	115	-	
Total Gate Charge	Qg	-V _{DS} = 30V, I _D =30A, -V _{GS} =10V	-	45	-	nC
Gate-Source charge	Q _{gS}		1	8	-	
Gate-Drain charge	Q _{gd}		ı	11	-	
Turn-On Delay Time	t _{d(on)}		ı	11	-	
Rise Time	t _r	V _{DD} = 30V, I _D =30A, V _{GS} = 10V, R _G =1.8Ω	ı	79	-	ns
Turn-Off Delay Time	t _{d(off)}		ı	33	ı	
Fall Time	t _f		-	105	-	
Maximum Body-Diode Continuous					50	
Current	Is	_		-	50	А
Maximum Body-Diode Pulsed Current	Ism		-	-	200	
Drain-Source Diode Forward Voltage	V _{SD}	I _{SD} =30A	-	-	1.20	V
Reverse Recovery Time	t _{rr}	I _F =I _S , I _{SD} =30A,	1	14	-	ns
Reverse Recovery Charge	Qrr	V _{GS} =0V, di/dt=100A/us	-	10	-	nC

REV1.0 - OCT 2024 RELEASED - - 3 -

TYPICAL PERFORMANCE CHARACTERISTICS

www.ait-ic.com

Fig 1. Output Characteristics

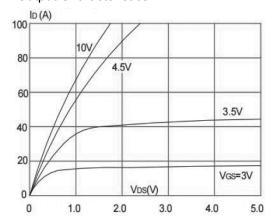


Fig 3. On-Resistance vs. Drain Current

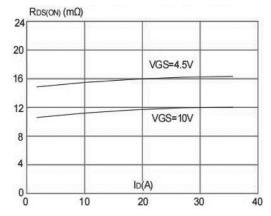


Fig 5. Gate Charge Characteristics

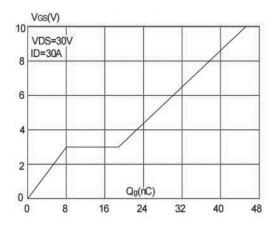


Fig 2. Typical Transfer Characteristics

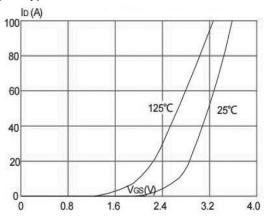


Fig 4. Body Diode Characteristics

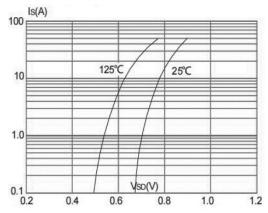
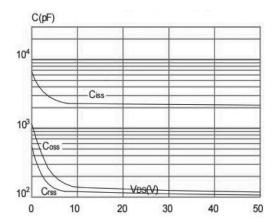



Fig 6. Capacitance Characteristics

REV1.0 - OCT 2024 RELEASED - - 4 -

Fig 7. Normalized Breakdown Voltage vs. Junction Temperature

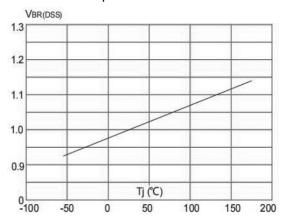


Fig 9. Maximum Safe Operating Area

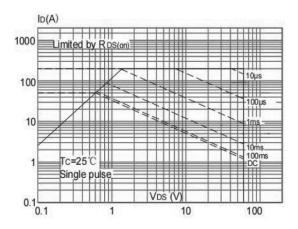


Fig 8. Normalized On Resistance vs. Junction Temperature

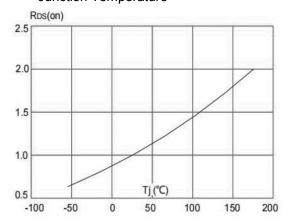


Fig 10. Maximum Continuous Drain Current vs. Case Temperature

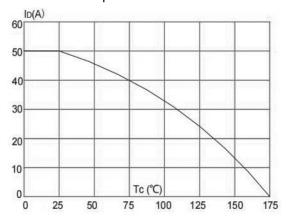
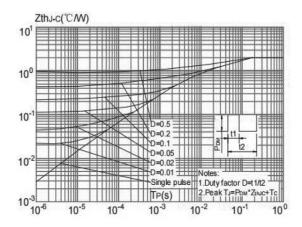
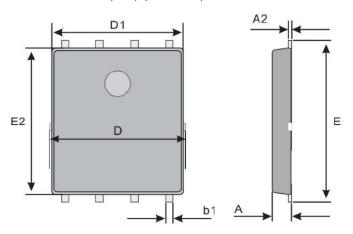
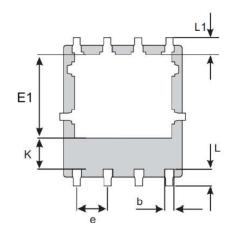



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case




REV1.0 - OCT 2024 RELEASED -- 5 -

AiT Semiconductor Inc. www.ait-ic.com

PACKAGE INFORMATION

Dimension in PDFN8 (5x6) (Unit: mm)

0	Millimeter			
Symbol	Min.	Max.		
Α	0.900	1.200		
A2	0.204	0.304		
b	0.400 REF.			
b1	0.200	0.400		
D	5.000	5.300		
D1	4.840	5.240		
E	5.700	5.900		
E1	3.275	3.675		
E2	5.690	6.090		
е	1.270 BSC.			
K	1.290 REF.			
L	0.585	0.785		
L1	0.700 TYP.			

REV1.0 - OCT 2024 RELEASED -- 6 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - OCT 2024 RELEASED - - 7