

DESCRIPTION

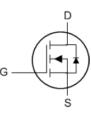
The AM80N06 is available in PDFN8 (5x6) Package.

BVDSS	RDSON	ID
60V	6mΩ	80A

APPLICATION

• Available in PDFN8 (5x6) Package.

ORDERING INFORMATION


Package Type	Part Number	
PDFN8(5x6)	סוס	AM80N06PJ8R
SPQ: 5,000pcs/Reel	PJ8	AM80N06PJ8VR
Note	R: Tape & Reel	
Note	V: Halogen free Package	
AiT provides all RoHS products		

FEATURE

- Super Low Gate Charge
- 100% EAS Guaranteed
- Green Device Available
- Excellent CdV/dt effect decline
- Advanced high cell density Trench technology

PIN DESCRIPTION

PDFN8(5x6)

Pin#	Symbol	Function
1,2,3	S	Source
4	G	Gate
5,6,7,8	D	Drain

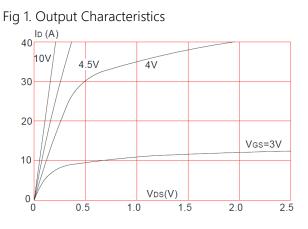
ABSOLUTE MAXIMUM RATINGS

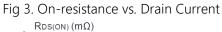
$\Gamma_c=25^{\circ}$ C, unless otherwise Noted		C0) (
V _{DSS} , Drain-Source Voltage		60V
V _{GSS} , Gate-Source Voltage		±25V
L Continue Drain Current	T _C =25℃	80A
I _D , Continue Drain Current	T _C =100°C	52A
I _{DM} ⁽¹⁾ , Pulsed Drain Current		320A
E_{AS} ⁽²⁾ , Single Pulsed Avalanche Energy		169mJ
P _D , Power Dissipation	T _C =25℃	108W
$R_{ extsf{ heta}JC}$, Thermal Resistance, Junction to Case		1.40°C/W
T _J , Operating Junction Temperature Range		-55°C~+175°C
T _{STG} , Storage Temperature Range		-55℃~+175℃

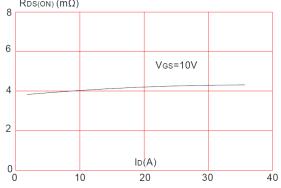
Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

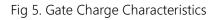
(1) Repetitive Rating : Pulse width limited by maximum junction temperature

(2) L=0.5mH, las=30A, Start T_J =25°C

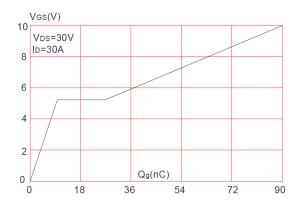
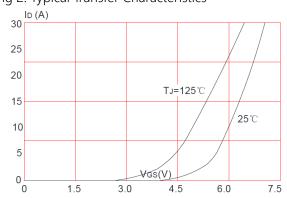
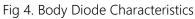
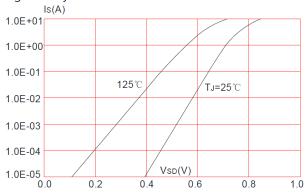
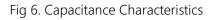



ELECTRICAL CHARACTERISTICS


$T_J = 25^{\circ}C$, unless otherwise Noted						
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250µA	60	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 60V, V_{GS} =0V	-	-	1	μA
Gate-Source Forward Leakage	I _{GSS}	V_{DS} = 0V, V_{GS} =±20V	-	-	±100	nA
On Characteristics						
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =30A	-	6	7	mΩ
Gate Threshold Voltage	V _{GS (th)}	V _{DS} =V _{GS} , I _D =250uA	2	3	4	V
Dynamic Characteristics						
Input Capacitance	C _{iss}		-	4136	-	pF
Output Capacitance	C _{oss}	−V _{DS} = 30V, V _{GS} =0V, −f=1MHz	-	286	-	
Reverse Transfer Capacitance	C _{rss}		-	257	-	
Total Gate Charge	Qg	V - 20V I - 20A	-	90	-	nC
Gate-Source charge	Q _{gS}	-V _{DS} = 30V, I _D =30A, -V _{GS} = 10V	-	9	-	
Gate-Drain charge	Q _{gd}		-	18	-	
Switching Characteristics						
Turn-On Delay Time	t _{d(on)}		-	9	-	ns
Rise Time	t _r	V _{DS} = 30V, I _D =30A,	-	7	-	
Turn-Off Delay Time	t _{d(off)}	V_{GS} = 10V, R_{G} =1.8 Ω	-	40	-	
Fall Time	t _f		-	15	-	
Source-Drain Diode Characteristics						
Maximum Continuous Drain to Source					80	
Diode Forward Current	I _S			-	00	
Maximum Pulsed Drain to Source Diode		-	_	_	320	A
Forward Current	I _{SM}				520	
Drain to Source Diode Forward Voltage	V _{SD}	V _{GS} = 0V, I _S =30A	-	-	1.2	V
Body Diode Reverse Recovery Time	t _{rr}	I _F =30A,	-	33	-	ns
Body Diode Reverse Recovery Charge	Q _{rr}	di/dt=100A/us	-	46	-	nC



TYPICAL PERFORMANCE CHARACTERISTICS

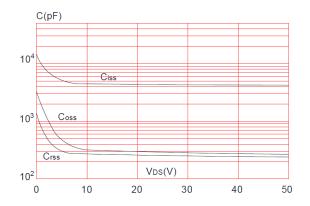

Fig 2. Typical Transfer Characteristics

Fig 7. Normalized Breakdown Voltage vs.

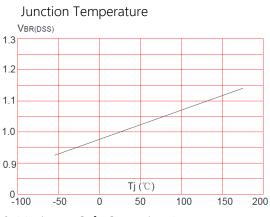
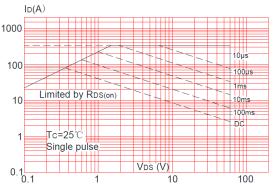
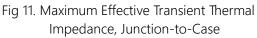




Fig 9. Maximum Safe Operating Area

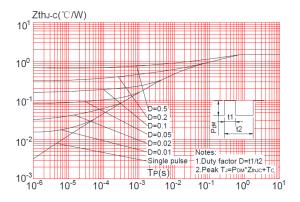


Fig 8. Normalized on Resistance vs.

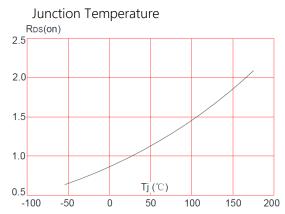
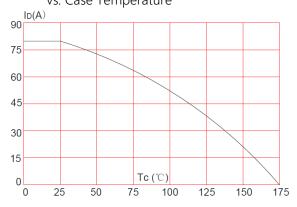
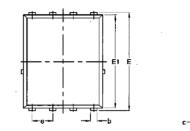
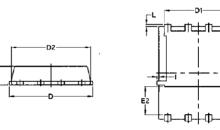



Fig 10. Maximum Continuous Drain Current vs. Case Temperature




гu

-[]]-[2-

PACKAGE INFORMATION

Dimension in PDFN8 (5x6) (Unit: mm)

	Millimeter			
Symbol	Min.	Max.		
А	1.030	1.170		
b	0.340	0.480		
С	0.824	0.970		
D	4.800	5.400		
D1	4.110	4.310		
D2	4.800	5.000		
E	5.950	6.150		
E1	5.650	5.850		
E2	1.600	-		
е	1.270 BSC.			
L	0.050	0.250		
L1	0.380	0.500		
L2	0.380	0.500		
Н	3.300	3.500		
	-	0.180		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.