

DESCRIPTION

The AM40T120 is available in TO-247 Package

VCES	IC	VCE	PD
1200V	40A	2.1V	367W

FEATURES

- Fast Switching
- Low V_{CE(sat)}: 2.1V

PIN DESCRIPTION

- Positive Temperature Coefficient
- Very Soft, Fast Recovery Anti-Parallel Diode
- Irrm: 12.3A

APPLICATION

- UPS
- Welding Converters
- Converters With High Switching Frequency

G TO-247 G C C C C C C C C C C

ORDERING INFORMATION

Package Type	Part Number			
TO-247	TL3F	AM40T120TL3FU		
SPQ:30pcs/Tube	IL3F	AM40T120TL3FVU		
Note	V: Halogen free Package			
nole	U: Tube			
AiT provides all RoHS products				

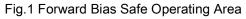
Pin#	Symbol	Function
1	G	Gate
2	С	Collector
3	E	Emitter

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Units
Collector-Emitter Voltage	VCES	1200	V
Collector Current @ Tc = 25 °C		80	A
Collector Current @ Tc = 100 °C		40	A
Pulsed Collector Current ⁽¹⁾ @ Tc = 25 °C	Ісм	160	A
Diode Continuous Forward Current @ Tc = 25 $^{\circ}$ C		40	А
Diode Continuous Forward Current @ Tc = 100 $^{\circ}$ C		20	A
Diode Maximum Forward Current @ Tc = 25 °C	IFM	80	А
Gate-Emitter Voltage	V _{GES}	±20	V
Power Dissipation @ Tc = 25 °C	PD	367	W
Storage Temperature Range	T _{stg}	-55 to 150	°C
Junction Temperature	TJ	150	°C
Maximum Temperature for Soldering	TL	260	°C
THERMAL CHARACTERISTICS			
Junction-to-Case (IGBT)	Rejc	0.34	°C/W
Junction-to-Case (Diode)	R _{eJC}	0.8	°C/W
Junction-to-Ambient	Reja	40	°C/W

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Pulse width limited by maximum junction temperature


ELECTRICAL CHARACTERISTICS

 $T_A=25^{\circ}C$, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units	
OFF CHARACTERISTICS							
Collector-Emitter Breakdown Voltage	VCES	V _{GE} =0V, I _C =250µA	1200	-	-	V	
Collector-Emitter Leakage Current	I _{CES}	V_{CE} = 1200V, V_{GE} = 0V	-	-	250	μA	
Gate-Emitter Leakage Current	IGES(F)	V _{GE} = +20V	-	I	600	nA	
Gate-Emitter Reverse Leakage	I _{GES(R)}	V _{GE} = -20V	-	-	-600	nA	
ON CHARACTERISTICS							
Collector-Emitter Saturation Voltage	V _{CE(sat)}	V _{GE} = 15V, I _C =40A	-	2.1	2.6	V	
Gate Threshold Voltage	V _{GE(TH)}	$V_{CE} = V_{GE}$, $I_C = 1mA$	5.0	5.8	6.5	V	
Pulse width tp≤300μs, δ≤2%							
DYNAMIC CHARACTERISTICS							
Input Capacitance	Ciss	V _{GE} = 0V	-	3560	-		
Output Capacitance	Coss	V _{CE} = 25V	-	150	-	pF	
Reverse Transfer Capacitance	Crss	f = 1.0MHz	-	90	-		
		I _C = 40A					
Total Gate Charge	Qg	V _{CE} = 960V	-	245	-	nC	
		V _{GE} = 15V					
SWITCHING CHARACTERISTICS	1	1	1	[[[
Turn-on Delay Time	t _{d(ON)}	I _C =40A	-	54	-		
Rise Time	tr	V _{CE} = 600V	-	100	-	ns	
Turn-Off Delay Time	$t_{d(OFF)}$	V _{GE} = 15V	-	245	-	115	
Fall Time	tr	R _G =10Ω	-	33	-		
Turn-On Switching Loss	Eon	Inductive Load	-	5.5	-		
Turn-Off Switching Loss	E _{off}		-	1.1	-	mJ	
Total Switching Loss	E _{ts}		-	6.6	-		
DIODE CHARACTERISTICS	1	r					
Diode Forward Voltage	VF	I _F =20A	-	2	2.5	V	
Reverse Recovery Time	Trr	I _F =20A,	-	60	-	nS	
Reverse Recovery Charge	Qrr	i⊧=20A, di/dt=200A/us	-	413	-	nC	
Reverse Recovery Current	Irrm		-	12.3	-	А	

TYPICAL PERFORMANCE CHARACTERISTICS

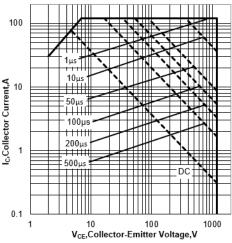


Fig.3 Collector Current vs Case Temperature

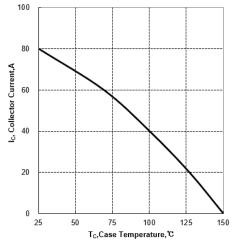


Fig.5 Typical Output Characteristics(T_C=25°C)

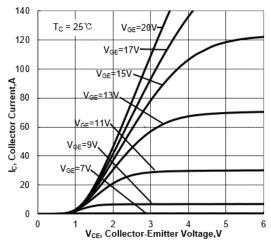


Fig.2 Power Dissipation vs Case Temperature

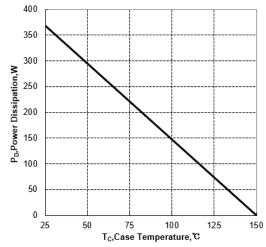


Fig.4 Typical Transfer Characteristics

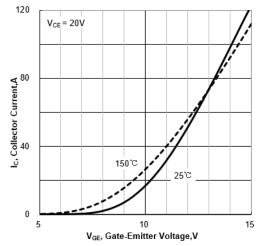
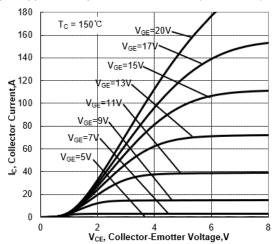



Fig.6 Typical Output Characteristics(T_C=150°C)

Fig.7 Typical Collector-Emitter Saturation Voltage vs Junction Temperature

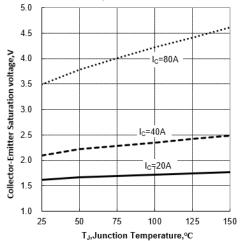
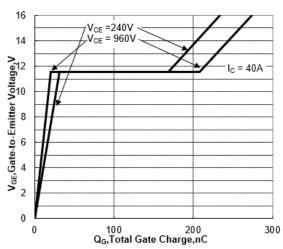
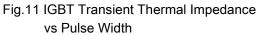
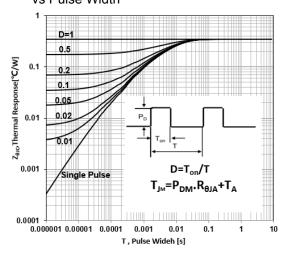





Fig.9 Typical Gate Charge

Fig.8 Typical Transfer Characteristics

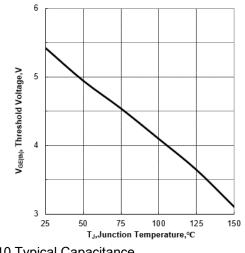
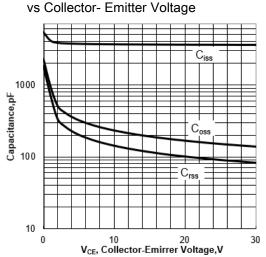
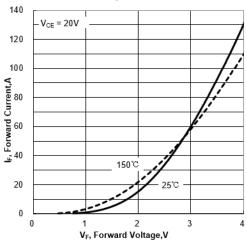
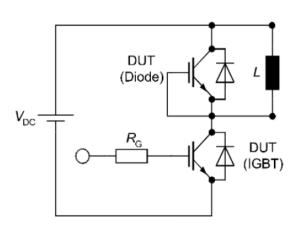


Fig.10 Typical Capacitance


Fig.12 Typical Diode Forward Current

vs Forward Voltage

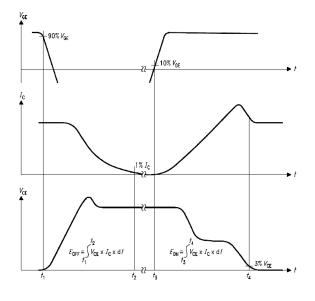
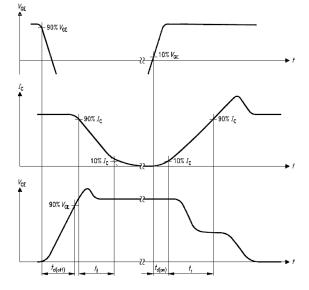
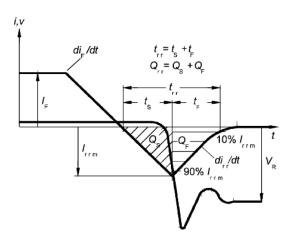
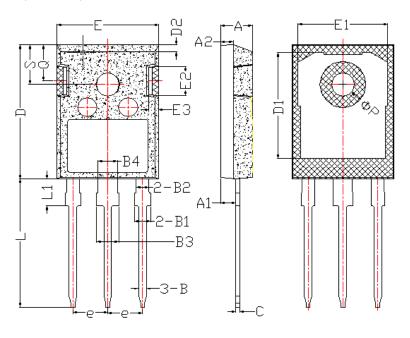


Fig.13 Inductive Switching Test Circuit

Fig.15 Inductive Switching Waveforms

Fig.14 Inductive Switching Waveforms


Fig.16. Inductive Switching Waveforms

PACKAGE INFORMATION

Dimension in TO-247 (Unit: mm)

Symbol	Min.	Max.	Symbol	Min.	Max.
А	4.900	5.160	D2	1.050	1.350
A1	2.270	2.530	Е	15.700	16.030
A2	1.850	2.110	E1	13.100	14.150
В	1.070	1.330	E2	3.680	5.100
B1	1.900	2.410	E3	1.680	2.600
B2	1.750	2.150	е	5.440	
B3	2.870	3.380	L	19.800	20.310
B4	2.870	3.130	L1	4.170	4.470
С	0.550	0.680	ΦP	3.500	3.700
D	20.820	21.100	Q	5.490	6.000
D1	16.250	17.650	S	6.040	6.300

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.