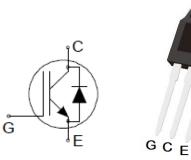


TO-3PN

DESCRIPTION

The AM40T65 is available in TO-3PN package.

VCES	IC	VCE	PD
650V	40A	1.55V	333W


FEATURE

- Fast Switching
- Positive temperature coefficient
- Fast recovery anti-parallel diode

APPLICATION

PIN DESCRIPTION

- Welding converters
- UPS
- Air condition

ORDERING INFORMATION

Package Type	Part Number		
TO-3PN	τv	AM40T65TXU	
SPQ: 30pcs/Tube	ТХ	AM40T65TXVU	
Net	U: Tube		
Note	V: Halogen free Package		
AiT provides all RoHS products			

Pin#	Symbol	Function
1	G	Gate
2	С	Collector
3	E	Emitter

ABSOLUTE MAXIMUM RATINGS

$T_c = 25^{\circ}C$, unless otherwise noted

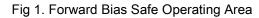
VCES, Collector-Emitter Voltage		650V
Ic, Collector Current	T _C =25°C	80A
	Tc=100°C	40A
I _{CM} , Pulsed Collector Current ⁽¹⁾	T _C =25°C	120A
I _F , Diode Continuous Forward Current	T _C =25°C	40A
	T _c =100°C	20A
IFM, Diode Maximum Forward Current	Tc=25°C	80A
V _{GES} , Gate-Emitter Voltage		±30V
P _D , Power Dissipation	Tc=25°C	333W
T _{JMAX} , Operating Junction Temperature Range		+150°C
T _{STG} , Storage Temperature Range		-55℃~+175℃
T∟, Maximum Temperature for Soldering		270°C

Stress beyond above listed "Absolute Maximum Ratings" may lead permanent damage to the device. These are stress ratings only and operations of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

*Pulse width limited by maximum junction temperature

THERMAL CHARACTERISTICS

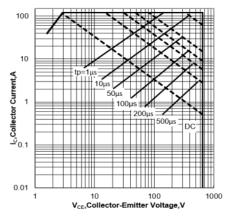
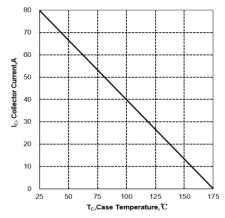
Parameter	Symbol	Тур.	Max	Units
Junction-to-Case (IGBT)	Rejc	-	0.45	
Junction-to-Case (Diode)	Rejc	-	1.12	°C/W
Junction-to-Ambient	R _{θJA}	-	40	


ELECTRICAL CHARACTERISTICS

 T_c = 25°C, unless otherwise stated.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
OFF Characteristics	·					
Collector-Emitter	VCES	V _{GE} =0V, I _C =-250µA	650	_	_	V
Breakdown Voltage	VCES		000		-	v
Collector-Emitter	ICES	V _{CE} = 650V, V _{GE} =0V	_	-	4	μA
Leakage Current	.020					
Gate-Emitter Leakage Current	IGES(F)	V _{GE} =+30V	-	-	200	nA
Gate-Emitter Reverse Leakage	I _{GES(R)}	V _{GE} =-30V	-	-	-200	
ON Characteristics						
Collector-Emitter	V _{CE (sat)}	V _{GE} =15V, I _C =40A		1.55	1.9	V
Saturation Voltage	V CE (sat)	VGE-13V, 10-40A	-	1.55	1.9	
Gate Threshold Voltage	V _{GE(TH)}	V _{CE} =V _{GE} , I _C =1mA	4.8	5.5	6.2	
Pulse width tp≤300μs, δ≤2%						
Dynamic Characteristics						
Input Capacitance	Ciss		-	2170	-	pF
Output Capacitance	Coss	V _{CE} =25V, V _{GE} =0V, f=1.0MHz	-	94	-	
Reverse Transfer Capacitance	Crss		-	27	-	
Total Gate Charge	Qg	Ic=40A, V _{CE} =520V, V _{GE} =15V	-	105	-	nC
Switching Characteristics		·	•	•	•	•
Turn-on Delay Time	td (on)		-	30	-	
Rise Time	tr		-	65	-	
Turn-Off Delay Time	td (off)	$I_{c}=40A, V_{cE}=400V,$	-	165	-	ns
Fall Time	tr	V _{GE} =15V, R _G =10Ω,	-	23	-	
Turn-On Switching Loss	Eon	- Tյ=25℃, - Inductive Load -	-	1.24	-	
Turn-Off Switching Loss	E _{off}		-	0.75	-	mJ
Total Switching Loss	Ets		-	1.99	-	
Diode Characteristics						
Diode Forward Voltage	VF	I _F =20A	-	1.95	2.4	V
Reverse Recovery Time	Trr	I _F =20A,	-	112	-	ns
Reverse Recovery Charge	Qrr	di/dt=200A/us,	-	650	-	nC
Reverse Recovery Current	Irrm	TJ=25℃	-	10.0	-	Α

TYPICAL PERFORMANCE CHARACTERISTICS

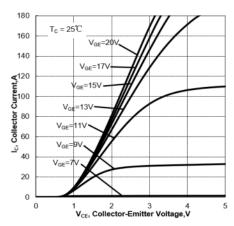


Fig3. Collector Current vs. Case Temperature

Fig 2. Power Dissipation vs. Case Temperature

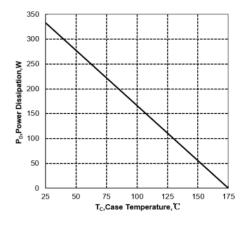
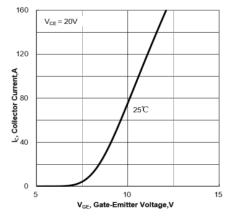



Fig4. Typical Transfer Characteristics

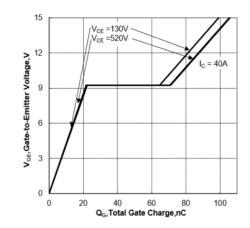
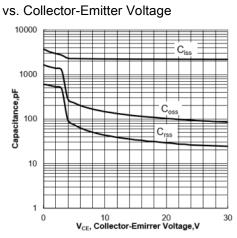



Fig7. Typical Capacitance

- Fig9. Diode Transient Thermal Impedance
 - vs. Pulse Width

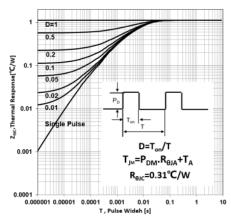


Fig11. Inductive Switching Test Circuit

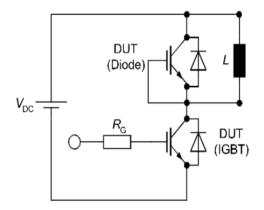


Fig8. IGBT Transient Thermal Impedance vs. Pulse Width

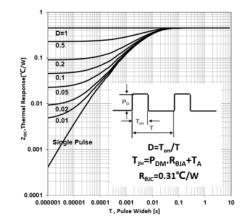


Fig10. Typical Diode Forward Current

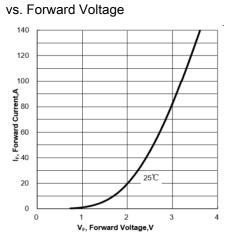
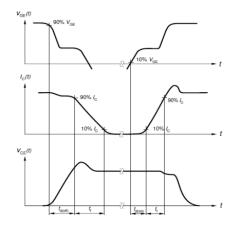
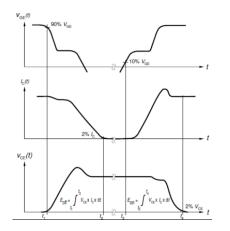
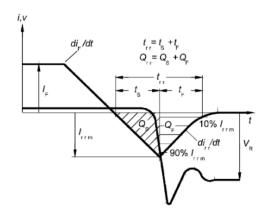
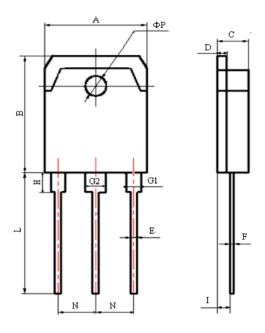



Fig12. Definition of Switching Times

Fig13. Definition of Switching Losses


Fig14. Definition of Diode Switching Characteristics

PACKAGE INFORMATION

Dimension in TO-3PN (Unit: mm)

Symbol	Min.	Max.
A	15.000	16.000
В	19.200	20.600
С	4.600	5.000
D	1.400	1.600
E	0.900	1.100
F	0.500	0.700
G1	2.000	2.200
G2	3.000	3.200
н	3.000	3.700
I	1.200	2.900
L	19.000	21.000
N	5.250	5.650
ΦΡ	3.100	3.300

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.