AP8204
AC-DC PFM CONTROLLER

HIGH ENERGY EFFICIENT NON-ISOLATED PFM CONVERTER

DESCRIPTION

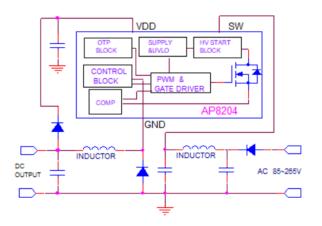
The AP8204 consists of an integrated Pulse Frequency Modulator (PFM) controller and power MOSFET, specifically designed for small power non-isolated switching power supply.

AP8204 has internal high voltage start-up circuit and complete intelligent protections including adjustable Over Load Protection (OLP), Under Voltage Lockout (UVLO) and Over Temperature Protection (OTP). Excellent EMI performance could be achieved with Pulse Frequency Modulation.

The AP8204 is available in SOP7 package.

ORDERING INFORMATION

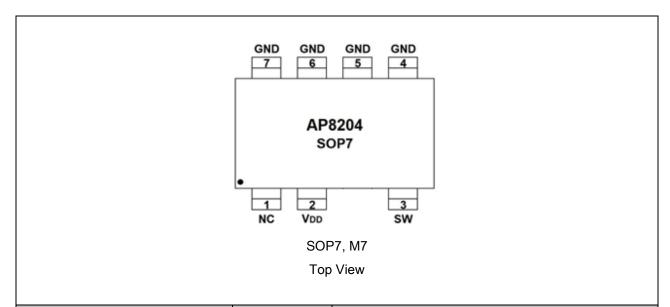
Package Type	Part Number			
SOP7	1.47	AP8204M7R		
SPQ: 4,000pcs/Reel	M7	AP8204M7VR		
Note	R: Tape & Reel			
Note	V: Halogen free Package			
AiT provides all RoHS products				


FEATURES

- Internal 650V avalanche-rugged smart power VDMOSFET
- Internal HV Start-up Circuit
- Be optimized with 12V output non-isolated application
- 60°C open frame steady output power
 4.8W@230V_{AC}
- Frequency modulation for low EMI
- Excellent constant voltage regulation and High efficiency
- Excellent Protection Coverage:
 Over Load Protection (OLP)
 Over Temperature Protection (OTP)
 Under Voltage Lockout (UVLO)

APPLICATION

- Appliances
- Metering
- Smart LED Drivers and industrial controls
- IOT, Home and building automation
- Non-Isolated Assistant Power Supply


TYPICAL APPLICATION

REV1.0 - JUL 2023 RELEASED - -1

AiT Semiconductor Inc. www.ait-ic.com

PIN DESCIPTION

#Pin	Symbol	Function		
SOP7	Symbol	Function		
1	NC	No Connection		
2	V_{DD}	Positive Supply Voltage Input.		
3	SW	HV MOSFET Drain Pin.		
4	GND	Ground		
5	GND	Ground		
6	GND	Ground		
7	GND	Ground		

REV1.0 - JUL 2023 RELEASED --2-

ABSOLUTE MAXIMUM RATINGS

V _{DD} , Supply Voltage Pin	-0.3V ~ +40V				
SW, High-Voltage Pin			-0.3V ~ +650V		
Operating Junction Temperature			-40°C ~ +150°C		
Storage Temperature Range			-55°C ~ +150°C		
Lead Temperature (Soldering, 10Secs)			260°C		
Package Thermal Resistance		SOP7	80°C/W		
HBM ESD Protection (1)		±6kV			
ESD Voltage Protection (2)			8kV		
Pulse Drain Current (T _{pulse} =100us)			3A		
TYPICAL POWER					
Input Voltage :150~265V _{AC}	Steady Output Power (3)		4.8W (12V400mA)		
	Peak Power (4)		5.4W (12V450mA)		

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1)Test standard: ESDA/JEDEC JDS-001-2014.
- (2) Air discharge to pins of AP8204 with ESD Generator, Enterprise internal standards, for reference only.
- (3)Maximum output power in an open frame design measured at 60°C ambient temperature, Duration:2 hours
- (4)Peak power in a semi enclosed design measured at 60°C ambient temperature, Duration: 1 min

REV1.0 - JUL 2023 RELEASED - - 3 -

ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
Power Section			•					
Drain Break-Down Voltage	BV _{DSS}	I _{SW} =250μA	650	690	-	V		
Off-State Drain Current	loff	V _{SW} =500V	-	-	100	μA		
Drain-Source on State Resistance	Rds(on)	Isw=400mA,T _J =25°C	-	8.0	-	Ω		
Start-Up Threshold	Vsw_start	V _{DD} = V _{DDon} -1V	-	30	-	V		
Supply Voltage Section	Supply Voltage Section							
V _{DD} Start Up Threshold	V_{DDon}	-	10.5	11.5	12.5	_ v		
V _{DD} Under Voltage Shutdown Threshold	V_{DDoff}	-	8	9	10			
V _{DD} Voltage Hysteresis	V_{DDhys}	-	-	2.5	-			
V _{DD} Clamp Voltage	$V_{DDclamp}$	-	18	20	22			
V _{DD} Feedback Reference	I _{DD-REF}	-	-	12.3	-			
Supply Current Section								
V _{DD} Charge Current	I_{DDch}	V _{DD} =10V	-	-2	-	- 0.9 mA 1.6		
Off-State Current	I_{DD0}	V _{DD} =6V	0.3	0.6	0.9			
Operating Supply Current	I_{DD1}	V _{DD} =13V	0.8	1.2	1.6			
Current Sense Section								
Drain Current Limit	I _{limit}	-	600	670	750	mA		
Leading Edge	T _{LEB}	_	_	300	_	ns		
Blacking Time								
Feedback Input Section		T		I	Τ	T.		
Minimum Turn OFF Time	T_{offmin}	-	15	18	21	μs		
Minimum Turn ON Time	Tonmax	-	-	13	-			
Thermal Shutdown Section								
OTP Threshold	TsD	-	135	150	-	°C		
OTP Protect Hysteresis	T_{HYST}	-	-	30	-	°C		
Restart Protection Section								
Restart Time	$T_{RESTART}$	C _{VDD} =4.7µF	-	3	-	S		

REV1.0 - JUL 2023 RELEASED - - 4 -

TYPICAL PERFORMANCE CHARACTERISTICS

Fig1. R_{DS (on)} vs. T_J

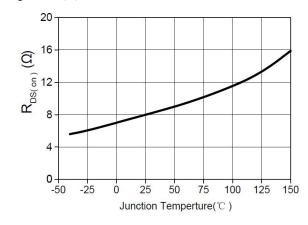


Fig2. BV_{DSS} vs. T_J

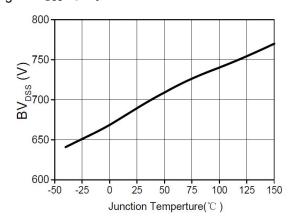


Fig3. VREF vs. TJ

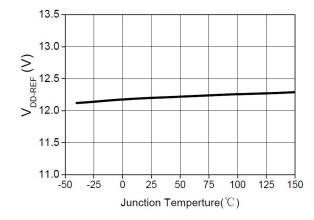


Fig4. Toffmin vs. TJ

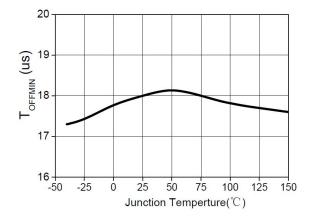
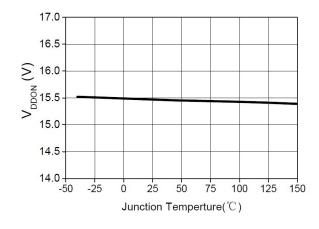
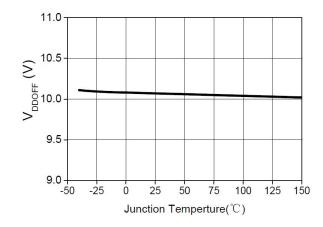
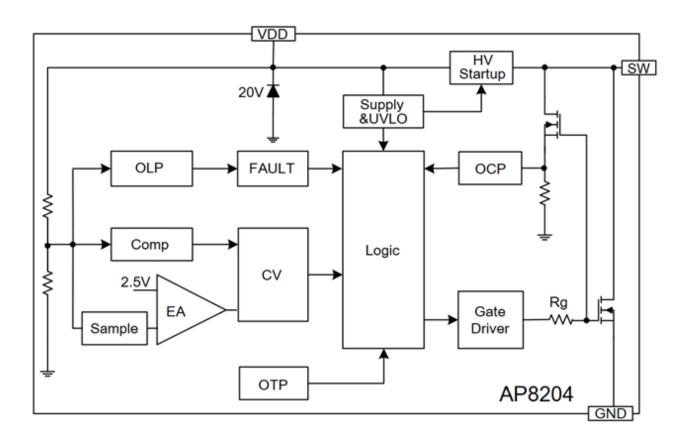


Fig5. V_{DDon} vs. T_J


Fig6. VDDoff vs. TJ

REV1.0 - JUL 2023 RELEASED - - 5 -

BLOCK DIAGRAM

www.ait-ic.com

REV1.0 - JUL 2023 RELEASED -- 6 -

DETAILED INFORMATION

Functional Description

The AP8204 consists of an integrated Pulse Frequency Modulator (PFM) controller and power MOSFET, specifically designed for small power non-isolated switching power supply. AP8204 has internal high voltage start-up circuit and complete intelligent protections including adjustable Over Load Protection (OLP), Under Voltage Lockout (UVLO) and Over Temperature Protection (OTP). Excellent EMI performance could be achieved with Pulse Frequency Modulation.

Start up

At start up, the internal high-voltage current source supplies 2mA current to charges the external V_{DD} capacitor. When V_{DD} rises to V_{DDon} , AP8204 starts switching and the internal high-voltage current source stops charging the capacitor. After start up, the V_{DD} voltage is supplied from output.

CV Operation Mode

In CV operation, AP8204 samples the feedback signal through V_{DD} pin. While the feedback voltage remains below V_{REF} , the IC turns on the integrated MOSFET. When the current of the inductor reaches the peak current limit (I_{peak}), the integrated MOSFET is turned off. Fig7. and Fig8. shows the operating waveform of key nodes in continuous conduction mode (CCM) and discontinuous conduction mode (DCM). Meanwhile, the IC integrates load compensation function to improve load regulation and CV accuracy.

In actual applications, V_{DD} sampling voltage is affected by the forward drop of D2 in addition.

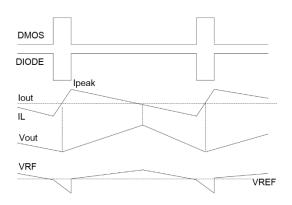


Fig7. Waveform if CCM Mode

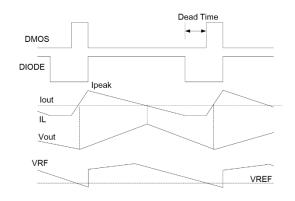


Fig8. Waveform of DCM Mode

REV1.0 - JUL 2023 RELEASED - - 7 -

AP8204
AC-DC PFM CONTROLLER

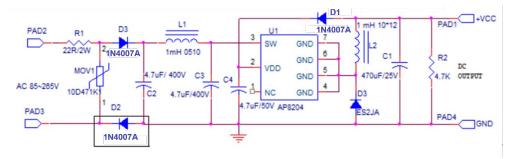
HIGH ENERGY EFFICIENT NON-ISOLATED PFM CONVERTER

PFM Modulation

The IC operates in PFM mode, and I_{PEAK} is set to decrease with the decrease of the IC operating frequency (F_{SW}). when the IC switching cycle increase 1us , I_{PEAK} will decrease 13.3mA. As a result of the internal current sampling and the maximum current limit (I_{limit}), inductance is the only parameter of the frequency modulation when output voltage and output current are fixed.

Soft-Start Up

In order to regulate peak current in deep CCM mode, AP8204 build in soft-start function, at the first 10ms of start up, the switching frequency decrease to 25% of the maximum frequency, while 10ms to 15ms of start up, the switching frequency decrease to 50% of the maximum frequency. Meanwhile, the leading edge blanking (LEB) is 300ns (Typ.), in order to regulate peak current.


Smart Protection Control

AP8204 has several smart self-protection functions, such as Over Temperature Protection (OTP), V_{DD} Under-Voltage Lockout (UVLO). And all these protections have self-recovery mode.

OTP----If the inner junction temperature exceeds 150°C,the IC will shut down switching, until the junction temperature falls to 120°C.

UVLO----If V_{DD} pin Voltage drops below V_{DDoff} , the IC will restart. Otherwise, self-restart time can be changed by V_{DD} capacitor. The larger the capacitor, the longer the self-restart time is.

Layout Guide

AiT Solution

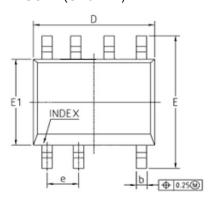
IC: AP8204

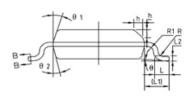
D1: 1N4007A

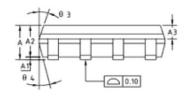
D2: 1N4007A

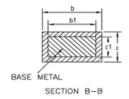
D3: 1N4007A

D2: ES2JA


- (1) For 2KV differential mode surge, a diode D2* 1N4007A is recommended.
- (2) V_{DD} capacitor C2 should be placed at the nearest place from the V_{DD} pin and the GND pin.


REV1.0 - JUL 2023 RELEASED - - 8 -


AiT Semiconductor Inc. www.ait-ic.com


PACKAGE INFORMATION

Dimension in SOP7 (Unit: mm)

Symbol	Min	Max	Symbol	Min	Max
Α	1.350	1.750	L	0.450	0.800
A1	0.100	0.250	L1	1.040 (REF)	
A2	1.250	1.650	L2	0.250 (BSC)	
А3	0.500	0.700	R	0.070	-
b	0.380	0.510	R1	0.070	-
b1	0.370	0.470	h	0.300	0.500
С	0.170	0.250	θ	0°	8°
c1	0.170	0.230	θ1	15°	19°
D	4.800	5.000	θ2	11°	15°
Е	5.800	6.200	θ3	15°	19°
E1	3.800	4.000	θ4	11°	15°
е	1.270 (BSC)				

REV1.0 - JUL 2023 RELEASED - - 9 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - JUL 2023 RELEASED - - 10 -