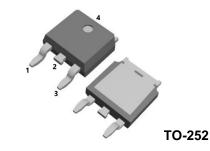


DESCRIPTION

The AM30N06 is available in TO-252 Package.

BVDSS	RDSON	ID
60V	24mΩ	30A


ORDERING INFORMATION

Package Type	Part Number			
TO-252	D	AM30N06DVR		
SPQ: 2,500pcs/Reel	D	AWSUNUODVR		
Note	R: Tape & Reel			
Note	V: Halogen free Package			
AiT provides all RoHS products				

FEATURE

- Super Low Gate Charge
- Excellent C_{dV}/d_t effect decline

PIN DESCRIPTION

Pin #	Symbol	Function
1	G	Gate
2,4	D	Drain
3	S	Source

ABSOLUTE MAXIMUM RATINGS

V _{DSS} , Drain-Source Voltage	
V _{GSS} , Gate-Source Voltage	
T _C = 25°C	30A
T _c = 100°C	13A
IDM, Pulsed Drain Current ⁽¹⁾	
E _{AS} , Single Pulse Avalanche Energy ⁽²⁾	
T _C = 25°C	41.70W
R _{θJC} , Thermal Resistance, Junction to Case	
T _{STG} , Storage Temperature Range	
T _J , Operating Junction Temperature Range	
	$T_{c} = 100^{\circ}C$ $T_{c} = 25^{\circ}C$ Case

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1) Repetitive Rating: pulse width limited by maximum junction temperature $T_{J(MAX)}$ =150°C.

(2) The EAS data shows Max. rating. The test condition is V_DD=25V, V_GS=10V, L=0.4mH, I_{AS}=14A

ELECTRICAL CHARACTERISTICS

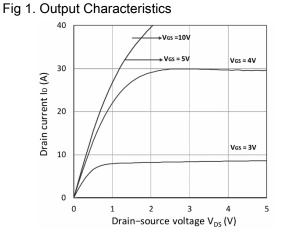
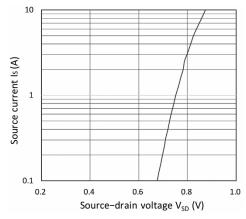
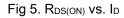
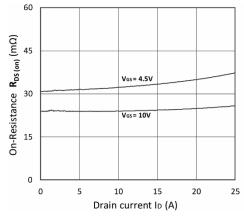
T_J = 25°C, unless otherwise specified.

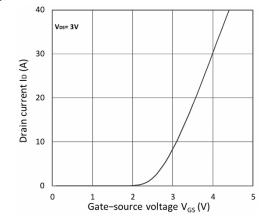
Parameter	Symbol	Conditions		Min	Тур.	Max	Unit
Static Characteristics							
Drain-Source Breakdown Voltage	V _{(BR)DSS}	s V _{GS} = 0V, I _D = 250µA		60	-	-	V
Gate-Body Leakage Current	lgss	V _{DS} =±20V, V _{GS} =0V		-	-	±100	nA
	I _{DSS}	V _{GS} =60V,	T _J = 25°C	5°C	1		
Zero Gate Voltage Drain Current		V _{DS} =0V	T _J = 100°C	-	-	100	μA
Gate-Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D :	= 250µA	1.2	1.7	2.5	V
		V _{GS} =10V, I _D = 10A		-	24	32	mΩ
Drain-Source On-Resistance ⁽¹⁾	RDS(ON)	V _{GS} =4.5V, I _D = 5A		-	31.5	40	
Forward Transconductance (1)	g fs	V _{DS} = 5V, I _D = 10A		-	15.5	-	S
Dynamic Characteristics ⁽²⁾						L	
Input Capacitance	Ciss	− V _{DS} =30V, V _{GS} =0V, − f=1.0MHZ		-	1355	-	pF
Output Capacitance	Coss			-	60	-	
Reverse Transfer Capacitance	Crss			-	49	-	
Gate Resistance	R _G	f=1.0MHZ		-	1.2	-	Ω
Switching Characteristics ⁽²⁾							
Turn-On Delay Time	t _{d(on)}	V _{DD} =30V, R _G =3Ω, V _{GS} =10V, I _D = 10A		-	6.4	-	ns
Turn-On Rise Time	tr			-	15.3	-	
Turn-Off Delay Time	t _{d(off)}			-	25	-	
Turn-Off Fall Time	t _f			-	7.6	-	
Total Gate Charge	Qg	− V _{DD} = 30V , I _D =10V − V _{GS} =10V		-	22	-	
Gate-Source Charge	Q _{gs}			-	4.2	-	nC
Gate-Drain Charge	Q_gd			-	6.9	-	
Body Diode Reverse Recovery Time	t _{rr}	− I⊧=10A, dı⊧/dt=100A/µs		-	26	-	ns
Body Diode Reverse Recovery Charge	Qrr			-	45	-	nC
Drain-Source Body Diode Characteris	tics						
Diode Forward Voltage	Vsd	Is=20A, V _{GS} =	:0V	-	-	1.2	V
Continuous Source Current	ls			-	-	30	А

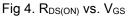
(1) Pulse text: Pulse width \leq 300µs, Duty Cycle \leq 2%.

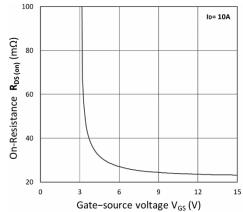
(2) This value is guaranteed by design hence it is not included in the production test.

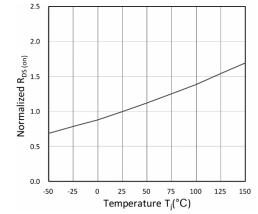
TYPICAL PERFORMANCE CHARACTERISTICS


Fig 3. Forward Characteristics of Reverse






Fig 2. Transfer Characteristics

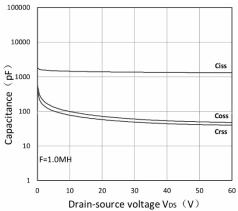
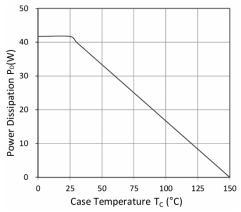



Fig 9. Power Dissipation

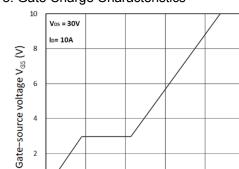
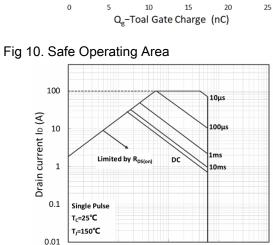



Fig 8. Gate Charge Characteristics

2

0

0.1

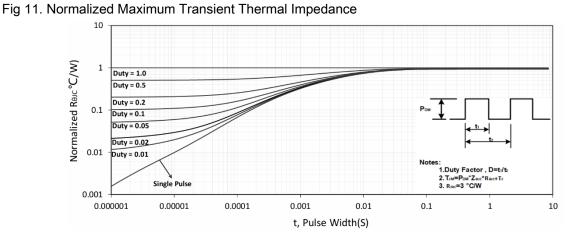
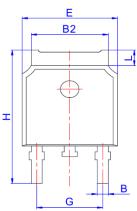
1

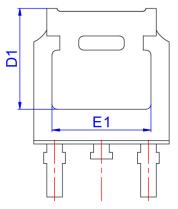
10

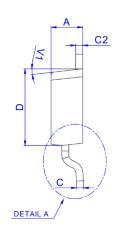
Drain-source voltage V_{DS} (V)

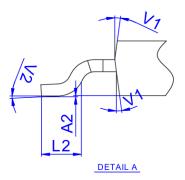
100

1000


Fig 7. Capacitance Characteristics




PACKAGE INFORMATION

Dimension in TO-252 (Unit: mm)

Symbol	Millimeters (mm)			
Symbol	Min.	Max.		
A	2.100	2.500		
A2	0.000	0.100		
В	0.660	0.860		
B2	5.180	5.480		
С	0.400	0.600		
C2	0.440	0.580		
D	5.900	6.300		
D1	5.300 REF.			
E	6.400	6.800		
E1	4.630	-		
G	4.470	4.670		
Н	9.500	10.700		
L	1.090	1.210		
L2	1.350	1.650		
V1	7°			
V2	0°	6°		

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc. integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or server property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.